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Chapter O

Introduction

From the seminal ideas of Feynman [1] and until now, quanhforination and computation [2]
has been a rapidly evolving field. While at the beginning,gitigts looked at quantum mechan-
ics as a theoretical framework to describe the fundamenteiegses that take place in Nature,
it was during the 80’s and 90’s that people began to think atfwuintrinsic quantum behavior
of our world as a tool to eventually develop powerful infotioa technologies. As Landauer
pointed out [3],information is physicalso it should not look strange to try to bring together
guantum mechanics and information theory. Indeed, it was sealized that it is possible to
use the laws of quantum physics to perform tasks which arenggivable within the frame-
work of classical physics. For instance, the discovery @fmum teleportation [4], superdense
coding [5], quantum cryptography [6, 7], Shor’s factoriaatalgorithm [8] or Grover’s search-
ing algorithm [9], are some of the remarkable achievemdmds lhave attracted the attention
of many people, both scientists and non-scientists. Thikesalown quantum information as a
genuine interdisciplinary field, bringing together resbars from diferent branches of physics,
mathematics and engineering.

While until recently it was mostly quantum information swe that benefited from other
fields, today the tools developed within its framework caniged to study problems offtirent
areas, like quantum many-body physics or quantum field yh&dre basic reason behind that is
the fact that quantum information develops a detailed stlidyiantum correlations, or guantum
entanglement Any physical system described by the laws of quantum mectaan then be
considered from the perspective of quantum information ams of entanglement theory.

It is the purpose of this introduction to give some elemgntackground about basic con-
cepts of quantum information and computation, togethen itstpossible relation to other fields
of physics, like quantum many-body physics. We begin by ictamsg the definition of @ubit,
and move then towards the definitioneftanglemenand the convertibility properties of pure
states by introducingnajorizationand thevon Neumann entropyThen, we consider the no-
tions ofquantum circuitandquantum adiabatic algorithirand move towards what is typically
understood by guantum phase transitiomriefly sketching how this relates tenormalization
andconformal field theoryWe also comment briefly on some possiekperimental implemen-
tationsof quantum computers.
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What is a “qubit™?

A qubitis a quantum two-level system, that is, a physical systerorites! in terms of a Hilbert
spaceC?. You can think of it as a spié—particle, an atom in which we only consider two energy
levels, a photon with two possible orthogonal polarizatioor a “dead or alive” Schrodinger’s
cat. Mathematically, a possible orthonormal basis for Hilbert space is denoted by the two
orthonormal vector$0) and|1). This notation is analogous to the one used for a classital bi
which can be in the two “states” 0 or 1. Notice, however, thatlaws of quantum mechanics
allow a qubit to physically exist ianylinear combination of the staté® and|1). That is, the
generic statd)) of a qubit is given by

) = |0) +BI1) , 1)
wherea andpg are complex numbers such thaf + 8> = 1. Given this normalization condition,
the above state can always be written as

W) = & (cos(g) 10) + & sin(g) |1>) , @)

wherey, 6 and¢ are some real parameters. Since the global pgaseas no observabldfects,
the physical state of a qubit is always parameterized ingerhtwo real numberg andg, that
is,

W) = cos(g) 10y + & sin(g) Iy ?)

The angle®) and¢ define a point on a sphere that is usually referred to a8tbeh sphere
Generally speaking, it is possible to extend the definitibmubits and define the so-called
qudits by means of quantum-level systems.

What is “entanglement™?

The definition of entanglement varies depending on whetleecansider only pure states or the
general set of mixed states. Only for pure states, we sayatigaten statey) of n parties is
entangledf it is not a tensor product of individual states for each ofhe parties, that is,

) # V1)1 ® [V2)2 ® - -+ ® [Vinhn - 4)

For instance, in the case of 2 qubKsndB (sometimes called “Alice” and “Bob”) the quantum
state

1
Y= —(0)aA®]|0 Dax|l 5
™) \/E(l )a®10)g + A ®[1)p) )
is entangled sinci*) # [va)a ® [ve)s. On the contrary, the state
1
lp) = > (I00a®10)s + DA ®[0)s + [0)A ® [1) + [1)a ® [1)B) (6)
is not entangled, since
1 1
=|— (|0 1 — (|0 1 . 7
) (ﬁ« >A+|>A))®(ﬁ(| >B+|>B)) @)



A pure state like the one from Edj.5 is callechaximally entangled state of two qubits aBell
pair, whereas a pure state like the one fromIEq.7 is cagshrable

In the general case of mixed states, we say that a givenstidte parties isentangledif it
is not a probabilistic sum of tensor products of individualtes for each one of the parties, that

is,

p# Y pkepse - epk, (8)
k

with {px} being some probability distribution. Otherwise, the mistate is calledeparable

The essence of the above definition of entanglement relitisadiact that entangled states of
n parties cannot be prepared by acting locally on each oneegfdlties, together with classical
communication (telephone calls, e-mails, postcardsmpray them. This set of operations is
often referred to as “local operations and classical comaoation”, or LOCC. If the actions
performed on each party are probabilistic, as is for in&#dhe case in which one of the parties
draws a random variable according to some probability idigion, the set of operations is
called “stochastic local operations and classical compatiain”, or SLOCC. Entanglement is,
therefore, a genuine guantum-mechanical feature whick dogexist in the classical world.
It carries non-local correlations between thffatient parties in such a way that they cannot be
described classically, hence, these correlationgjaa@tum correlations

The study of the structure and properties of entangledsstatastitutes what is known as
entanglement theoryin this thesis, we shall always restrict ourselves to tharggiement that
appears in pure states. We also wish to remark that the ot the tensor product of pure
states can be fierent depending on the textbook, in such a way[thas®|ve)s = [Va)alVe)s =
[va, V). An introduction to entanglement theory, both for pure arideah states, can be found
for instance in [10].

Majorization and the von Neumann entropy

Majorization theoryis a part of statistics that studies the notion of order irbphility distri-
butions [11-14]. Namely, majorization states that giveo fpwobability vectorsK andy, the
probability distributiony majorizesx, written asX <, if and only if

X= ) PP, ©)
k

where{py} is a set of probabilities andPy} is a set of permutation matrices. The above definition
implies that the probability distributioR is more disordered than the probability distributign
since it can be obtained by a probabilistic sum of permutata@fy. More details on majorization
theory, which is often used in this thesis, are given in ApjdeA.

Majorization theory has important applications in quantimiormation science. One of
them is that it provides a criteria for the interconverttiibf bipartite pure states under LOCC.
More concretely, given two bipartite stat@eg) and|¢ag) for partiesA andB, and given the
spectrumsg,, and g, of their respective reduced density matrices describingairthe two
parties, the stat@ ag) may be transformed ti@ag) by LOCC if and only if [15]

Py <Py - (10)
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An important theorem from classical information theorytthkays a role in the study of
entanglement is the so-callddeorem of typical sequencedn order to introduce it, let us
previously sketch some definitions. Consider a source tériek which are produced with
some probabilityp(x). The Shannon entropyssociated to this source is defined Hhs=
- >x p(¥)log, p(x). Given a set oin independent sources, we say that a string of symbols
(X1, X2, ..., Xn) is e-typical if

279 < p(xq, Xp, . ..., Xn) < 27(H+e) (11)

where p(Xq, X2, ..., X)) = p(x1)p(x2) - - - p(xn) is the probability of the string. The set of the
e-typical sequences of lengthis denoted a3 (n, €). We are now in position of considering the
theorem of typical sequences, which is composed of thres:par

Theorem 0.1 (of typical sequences):

e Givene > 0, for anys > 0 and suyficiently large n, the probability that a sequence is
e-typical is at leastl — 6.

e For any fixede > 0 and¢é > 0O, and syficiently large n, the numbéf (n, €)| of e-typical
sequences satisfies
(1-06)2"H-9 <T(n,e)| < 2"H+9) . (12)

e Let S(n) be a collection of size at mo&tR, of length n sequences from the source, where
R < H is fixed. Then, for an§ > 0 and for syficiently large n,

P(X1, X2, ..., Xn) <O . (13)
(X1, X2,....Xn) € S(N)

It is not our purpose here to provide a detailed proof of thitem (the interested reader is
addressed for instance to [2]). We shall, however, make Lisénovhat follows.

Let us introduce at this point a quantity which is to play aonaple all along this thesis.
Given a bipartite pure quantum stateg), with reduced density matrices = trg(ly as){¥asl)
andpg = tra(lyas)X¥agl), thevon Neumann entropyf this bipartition is defined as

S = S(pa) = —tr(palog, pa) = S(ps) = —tr(eg 109, pB) , (14)

where the equality follows from the fact thet andpg share the same spectrum. This entropy
is also calledentanglement entropysince it provides a measure of the bipartite entanglement
present in pure states. To be precise, the entanglemeipgntreasures the optimal rate at
which it is possible to distill Bell pairs by LOCC in the limif having an infinite number of
copies of the bipartite system.

Let us explain how the above consideration works. Given tpartite pure stat@/ag), we
write it in terms of the so-calle@chmidt decomposition

[YaB) = Z VP(X)Xa)AlXs)B 5 (15)



where the squarp(x) of the Schmidt cofficients define the probability distribution that appears
as the spectrum of the reduced density matrices for the twigepa Then-fold tensor product
|l ag)®" can be written as

W aB)®" = Z VP(2) p(%2) - - - P(Xn)| X1, X2, - - - » XnAYAIX1B, X2B, - - - » XnB)B - (16)

(X1,X25-..,%n)

Let us now define a quantum statg) obtained by omitting in EG16 those strings.(Xz, . . ., Xn)
which are nok-typical:

[pn) = Z VP(x2)p(x2) - - - P(Xn)|X1a, X2, - - - » XnAYAIX1B, XoB, - - -» XnB)B - (17)

(X1,X2,....%n) € T(n,€)

Since the previous state is not properly-normalized, wenddfie statdp!,) = |¢n)/ v{Pnlén)-
Because of the first part of the theorem of typical sequerthespverlap betweejyag)®" and
l¢r,) tends to 1 as — oo. Furthermore, by the second part of the theorem we havéTifrak)| <
2n(H+e) — on(S+e)  Given these properties, a possible protocol to transfaspies of the state
| ag) into Bell pairs by means of LOCC reads as follows: patyay convert the stateyag)®"
into the statggr,) with high probability by performing a local measuremenbiits e-typical
subspace. The largest Schmidt fiméent of |¢,) is 2-S-€)/2 by definition of typical sequence,
and since the theorem of typical sequences also tells uslthat is a lower bound on the
probability for a sequence to hetypical, the largest Schmidt cfigient of |¢;,) is at most
2-N(S-9/2/4/1 5. Let us now choose am such that

2—n(S—s)
1-6

<2™m. (18)

Then, the spectrum of the reduced density matricesfmdB are majorized by the probability
vector (2™, 2™, ...,22™T and therefore the stajg/,) can be transformed intm copies of a
Bell state by means of local operations and classical conwation. More specifically, in the
limit n — oo the ratiom/n between the number of distilled Bell pairs and the originainber
of states exactly coincides with the entanglement ent&py

It is possible to see that the above distillation protocag@imal, that is, it is not possible to
distill more thamS Bell pairs from a total ofh copies of a bipartite pure state in the limits co.
Because of this property, the von Neumann entropy is aldecctitedistillable entanglement
of a pure bipartite system. Furthermore, it is possible ®tbat the entropys coincides as
well with the entanglement of formatioof bipartite pure states, which is the optimal ratipn
describing the numben of Bell pairs that are required to createcopies of a given bipartite
pure state by means of LOCC, in the limit> c. The von Neumann entropy constitutes then
a genuine measure of the bipartite entanglement that ispirésa given pure quantum state.

Quantum circuits and adiabatic quantum algorithms

Much in analogy to the situation in classical computatioheve it is possible to define a com-
putation by means of logic gates applied to bits, a quantumpeation may be defined in terms
of a set ofunitary gatesapplied to qubits. These unitary gates may either be loctihgon a
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e

——

Figure 1: Quantum circuits representing the action of a IHedd gate on a single qubit and
a controlled-not gate on two qubits. The controlling qubidenoted by a black dot, and the
controlled qubit is denoted by the symluml

single qubit, or non-local, acting on several qubits at atirAn important example of a local
gate is given by the so-called Hadamard gate:

1/1 1
= la ) "
which acts on the two-dimensional Hilbert space of a singlgitgsuch that
UHIO) = —=(0) + 1)
" V2
1
Unll) = —(10)-11)). (20)
" V2
Also, an important example of a non-local gate is the coletiehot gatdJcnor:
1 00
0100
Uenot=(g o o 1l° (21)
0 010
acting on the four-dimensional Hilbert space of two qubitshsthat
Ucnotl0,0) = 0,0)
Ucnotl0,1) = [0,1)
Ucnotll, 0y = |1 1)
Ucnotll, 1) = [1,0). (22)

In the example of the controlled-not gate, the first and seaprbits are respectively called
the controlling qubitand thecontrolled qubit since the action of the gate on the second qubit
depends on the value of the first one. It is possible to definee generalcontrolled gates
similarly to the controlled-not gate, namely, if the cofitny qubit is in the staté0) nothing
is done on the second one, whereas if the controlling qubit the statdl) then some local
unitary gate acts on the second qubit. The application oflifierent unitary gates that define
a quantum computation on a system of qubits can be representerms ofquantum circuits
such as the ones from Hi§.1 and Eig.2. In a qguantum circuti ea® represents a qubit, and
the time flows from left to right.

Independently of quantum circuits, it is possible to defitieraative models to perform
guantum computations, such as the adiabatic model of guesytimization [16]. The adiabatic
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Figure 2: A possible quantum circuit of 5 qubits composed aflémard and controlled-not
gates. Some measurements are performed on the qubits atttio¢ the quantum computation.

guantum algorithm deals with the problem of finding the gwtate of a physical system
represented by its Hamiltoniate. The basic idea is to perform an interpolation in time betwee
some easy-to-build Hamiltonidtly andHp, such that if the initial state of our system is a ground
state ofHp, we may end up in a ground stateldf with high probability after evolving for a
certain amount of time, as long as some adiabaticity canditare fulfilled. For example, we
could consider the time-dependent Hamiltonian

H(t)z(l—%)Ho+%Hp, (23)
wheret € [0, T] is the time parametefl being some computational interpolation time gifin
represents the global minimum along the evolution of thegngap between the ground state
and the first excited state of the system, the adiabatic ¢éneanplies that, if at = 0 the system
is at ground state dflg, in order to be at the ground statetdp at timeT with high probability
itis required thall ~ 1/gr2nm. The scaling properties with the size of the system of thémmim
energy gap controls then the computational time of the qumaratlgorithm. Actually, the fact
that the system evolves through a point of minimum gap insplat it approaches a quantum
critical point, to be defined in what follows. A more detailexblanation of adiabatic quantum
algorithms is given in Chapter 4.

Quantum criticality in quantum many-body systems

A quantum phase transitiois a phase transition betweenffdrent phases of matter at zero
temperature. Contrary to classical (also called “therinpHase transitions, quantum phase
transitions are driven by the variation of some physicabpaater, like a magnetic field. The
transition describes an abrupt change in the propertidseajriound state of the quantum system
due to the #ect of quantum fluctuations. The point in the space of pararseit which a
quantum phase transition takes place is callectthieal point, and separates quantum phases
of different symmetry.

Some properties of the system may display a characteristi@vior at a quantum criti-
cal point. For instance, the correlators in a quantum maytsystem may decay to zero
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as a power-law at criticality, which implies a divergentretation length and therefore scale-
invariance, while decaying exponentially d@f-oritical regimes. Since quantum correlations are
typically maximum at the critical point, some entanglemergasures may have a divergence.
The ground-state energy may display non-analyticitiesnapproaching criticality, and the en-
ergy gap between the ground state and the first excited dtdte system may close to zero.
Our definition of quantum phase transition is very generit @es not necessarily involve all
of the above behaviors. In fact, itis indeed possible to furadqum systems in which there is an
abrupt change of the inner structure of the ground statecrabe detected by some properties
but not by others [17].

Let us give a simple example of a quantum critical point: abersthe (1+ 1)-dimensionﬁ
ferromagnetic quantum Ising spin chain, as defined by theiltanan

H=-J

ool =)ot (24)

N
=1 i

N
=1
whereo{ is the Pauli matrix at sitei of the chain,J > 0 is a coupling parameter, aidlis the
number of spins. Afl = co the ground state of the system is two-fold degenerate arglsterof
all the spins aligned ferromagnetically in tRalirection, being its subspace spanned by the two
vectors|+, +,...,+) and|-, —, ..., —), where|+) and|-) denote the two possible eigenstates
of the pauli matrixa*. On the other hand, at = 0 the ground state of the system consists
of all the spins aligned along tredirection,|0,0, ..., 0), where|0) = %(H) +|-)). We now
consider the behavior of the magnetization per particldefground state in thedirection, as

defined by the expected vali = i{\l‘vﬁ In the thermodynamic limiN — oo this quantity
tends to one whed — 0, and tends to zero wheh— oo. A detailed analysis of this model
in this limit shows that there is a specific point at which thagmetization per particle has a
sudden change, as is represented inFig.3. This behavidierthat the model undergoes a
second-order quantum phase transition at the criticaltpbia J* = 1 in the thermodynamic
limit.

One may wonder what is the symmetry that we are breaking ;gihiple example of a
quantum phase transition: it is the symmefythat the Hamiltonian from EQ.24 has at high
values of the coupling parameter. In fact, this symmetnideven be further broken when
J — o if some extremely small magnetic field in tixedirection were present in our system,
selecting one of the two possible ground states within thasp. In such a case, it is said that
the symmetry of the Hamiltonian spontaneously broken

A useful tool in the study of quantum critical systems is id@ormalization groug18, 19],
which describes the way in which a theory gets modified undelesransformations. Given
some Hamiltonian depending on a set of parameters, thddraregions of the renormalization
group define a flow in the parameter space, and in particuafixbd points of those transfor-
mations correspond to theories which are invariant undengés of scale. Indeed, the essence
of the renormalization procedure is the elimination of @egrof freedom in the description of
a system. This point of view is one of the basis for the devalat of diferent numerical tech-

aWe use the field-theoretical notation-{11) to denote one spatial and one temporal dimension. Timievaya
to be kept fixed.
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Figure 3: Magnetization per particle in the ferromagnetiargtum Ising spin chain as a function
of the coupling parameter, in the thermodynamic limit. TleépJ = J* = 1 corresponds to a
second-order quantum phase transition point.

niques that allow to compute basic properties of quantumyrbaly systems, as is the case of
the so-calledlensity matrix renormalization grougdgorithm [20].

The behavior of many quantum critical models can also bea@x@dl by using tools from
conformal field theory21]. There are quantum many-body systems which can be stotelr as
a regularization on a lattice of a quantum field theory, akéscase of the previously-discussed
Ising guantum spin chain, which can be represented by thatguefield of a (& 1)-dimensional
spinless fermion [22]. When those quantum many-body systesnome critical, their descrip-
tion in terms of a quantum field theory allows to see that timaragtry group is not composed of
only scale transformations, but of the full groupawinformal transformationslin fact, confor-
mal symmetry is particularly powerful when applied to+1)-dimensional quantum systems,
allowing to determine almost all the basic properties ofrttuglel in consideration just by means
of symmetry arguments. We perform some conformal field ghealculations in this thesis, and
some basic technical background is given in Appendix B.

Experimental quantum computers

There will exist some day a quantum computer? This appgremtple question is by no means
easy to answer. Actually, it is the opinion of some sciesattbiat it is eventually impossible
to build a quantum computer because of the unavoidable gmobf thedecoherencehat any
guantum system undergoes when it interacts with its enwigont. Nevertheless, other physicists
think that these experimental drawbacks can be eventuapigiit ameliorated if the appropriate
conditions are given. The main requirements that any exyarial proposal must match if its
purpose is to faithfully represent a quantum computer aogvkras thediVincenzo criterig23],
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and so far there have been mangfelient ideas to perform experimental quantum computation
that try to fulfill as much as possible these conditions. Irtgott proposals are those based
on quantum optical devices, such as thgical photon quantum compufetavity quantum
electrodynamics devicesptical lattices or ion traps[24]. The idea of performing quantum
computation by means ofuclear magnetic resonan¢blMR) has been considered as well [25—
27]. Furthermore, proposals basedsuperconductor deviceguantum dot§28], anddoped
semiconductorf?29, 30] have also been considered bffatient people. The future development
of these and other experimental techniques, and to whaitgkiy can implement a many-qubit
guantum computer, remains yet uncertain. A detailed dsonsabout experimental qguantum
computation can be found for instance in [2].

What is this thesis about?

We focus here on the fields of quantum information sciencadeonsed-matter physics, and
quantum field theory. While these three branches of physinde regarded as independent by
themselves, there are clear overlaps among them, suchrtbatddge from one field benefits
the others. As we said, conformal field theory [21] has heljpednderstand the universality
classes of many critical (2 1)-dimensional quantum many-body systems. Also, the stifidy
the entanglement present in the ground state of quantumltdarains at a quantum phase tran-
sition shows direct analogies with those coming from thelstof entropies in quantum field
theory [31-44]. These results in turn connect with the parénce of numerical techniques like
the density matrix renormalization group [20], that allavcbmpute basic properties of some
guantum many-body systems [45-60]. Indeed, quantum phassittons are very much re-
lated to the model of adiabatic quantum computation [1676&]-which poses today challenges
within the field of computational complexity [72].

The work that we present in this thesis tries to be at the ox@sf quantum information
science, quantum many-body physics, and quantum fieldyth&¢e use tools from these three
fields to analyze problems that arise in the interdiscipjinatersection. More concretely, in
Chapter 1 we consider the irreversibility of renormaliaatgroup flows from a quantum infor-
mation perspective by using majorization theory and caonédrfield theory. In Chapter 2 we
compute the entanglement of a single copy of a bipartite tguaisystem for a variety of mod-
els by using techniques from conformal field theory and Titephatrices. The entanglement
entropy of the so-called Lipkin-Meshkov-Glick model is gomted in Chapter 3, showing analo-
gies with that of (¥ 1)-dimensional quantum systems. In Chapter 4 we apply #esidf scaling
of quantum correlations in quantum phase transitions tetihdy of quantum algorithms, fo-
cusing on Shor’s factorization algorithm and quantum atgors by adiabatic evolution solving
an NP-complete and the searching problems. Also, in Ché&piex use techniques originally
inspired by condensed-matter physics to develop classikallations, using the so-called ma-
trix product states, of an adiabatic quantum algorithm.alynin Chapter 6 we consider the
behavior of some families of quantum algorithms from thespective of majorization theory.

The structure within each Chapter is such that the last@eativays summarizes the basic
results. Some general conclusions and possible futuretidins are briefly discussed in Chapter
7. Appendix A, Appendix B and Appendix C respectively deathadome basic notions on
majorization theory, conformal field theory, and classmahplexity theory.



Chapter 1

Majorization along parameter and
renormalization group flows

Is it possible to somehow relate physical theories thatries®Nature at dferent scales? Say,
given a theory describing Nature at high energies, we shdeifdand that theffective low-
energy behavior should be obtained by integrating out the-bBhergy degrees of freedom, thus
getting a new theory correctly describing the low-energgtaeof the original theory. This
should be much in the same way as Maxwell’s electromagnetismectly describes the low-
energy behavior of quantum electrodynamics.

This non-perturbative approach to the fundamental thea@/erning Nature was essen-
tially developed by Wilson and is the key ingredient of thecatled renormalization group
[18,19, 73]: dfective low-energy theories can be obtained from high-gntrgories by conve-
niently eliminating the high-energy degrees of freedomb&anore precise, the renormalization
group is the mechanism that controls the modification of ssigay theory through a change of
scale. Renormalization group transformations then defifh@aain the space of theories from
high energies (ultraviolet theories) to low energies éndd theories). Actually, it is possible to
extend this idea, and the renormalization procedure candve generically understood as the
elimination of some given degrees of freedwirich we are not interested in because of some
reason. The name “renormalization group” is used due tofiist reasons, since the set of
transformations does not constitute a formal group from themaatical point of view.

Since the single process of integrating out modes seemgptreaqly be an irreversible op-
eration by itself, one is naturally led to ask whether reraization group flows are themselves
irreversible. This question is in fact equivalent to askimigether there is a fundamental ob-
struction to recover microscopic physics from macroscppigsics, or more generally, whether
there is a net information loss along renormalization groajectories. While some theories
may exhibit limit cycles in these flows, the question is undbich conditions irreversibility
remains. Eorts in this direction were originally carried by Wallacedagia [74], while a key
theorem was later proven by Zamolodchikov [75] in the contéX1+1)-dimensional quantum
field theories: for every unitary, renormalizable, Poigceavariant quantum field theory, there
exists a universai-function which decreases along renormalization groupd]avhile it is only
stationary at (conformal) fixed points, where it reducediodentral charge of the conformal

11
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theory. This result sets an arrow on renormalization grooywd] since it implies that a given
theory can be the infrared (IR) realization of another ultiet (UV) theory only if their central
charges satisfy the inequalityr < cyv.

The following question then arises: “under which condisiameversibility of renormaliza-
tion group flows holds in higher dimensions?”. This has bekivessed from dierent perspec-
tives [76—94]. Itis our purpose here to provide a hew pointiefv about this problem based on
the accumulated knowledge from the field of quantum informmegcience, by focusing first on
the case of ( 1) dimensions.

An important application of quantum information to quantarany-body physics has been
the use of majorization theory [11-14] in order to analyze structure present in the ground
state — also called vacuum — of some models along renorrtiatizgroup flows. Following
this idea, in [95] it was originally proposed that irrevéibity along the flows may be rooted in
properties concerning only the vacuum, without necessigcoessing the whole Hamiltonian
of the system and its full tower of eigenstates. Such anersility was casted into the idea of
an entanglement losalong renormalization group flows, which proceeded in tlio@estructive
steps for (11)-dimensional quantum systems: first, due to the fact ti@tentral charge of a
(1+1)-dimensional conformal field theory is in fact a genuineamge of the bipartite entangle-
ment present in the ground state of the system [36—44], ibaaglobal loss of entanglement
due to thec-theorem of Zamolodchikov [75]; second, given a splittifghe system into two
contiguous pieces, there is a monotonic loss of entanglethento the numerically observed
monotonicity for the entanglement entropy between the wsgstems along the flow, decreas-
ing when going away from the critical fixed — ultraviolet — ppithird, this loss of entanglement
is seen to be fine-grained, since it follows from a strict $ahajorization ordering relations,
numerically obeyed by the eigenvalues of the reduced denstrix of the subsystems. This
last step motivated the authors of [95] to conjecture thettethvas dine-grained entanglement
loss along renormalization group flows rootealy in properties of the vacuunat least for
(1+1)-dimensional quantum systems. In fact, a similar finenggh entanglement loss had al-
ready been numerically observed in [37, 38], for changekersize of the bipartition described
by the corresponding ground-state density operators,rdboually-invariant critical points.

The aim of this Chapter is to analytically prove relationswmen conformal field theory,
renormalization group and entanglement. We develop, irbih@rtite scenario, a detailed and
analytical study of the majorization properties of the aigdue spectrum obtained from the re-
duced density matrices of the ground state for a variety -efJdimensional quantum models.
Our approach is based on infinitesimal variations of therpatars defining the model — mag-
netic fields, anisotropies — or deformations in the size eftttockL for one of the subsystems.
We prove in these situations that there are strict majoozatlations underlying the structure
of the eigenvalues of the considered reduced density reatdg in other words, that there is a
fine-grained entanglement loss. The result of our studydserted in terms of two theorems.
On the one hand, we are able to prove continuous majorizatiations as a function of the
parameters defining the model under study. Some of theseifiggesameter space may indeed
be understood as renormalization group flows for a partiatlkss of integrable theories, like
the Ising quantum spin chain. On the other hand, using thdimaxy of conformal field theory
in the bulk we are able to prove exact continuous majorinattations in terms of deformations
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of the size of the block that is considered. We also provide explicit analyticalregphes for
models with a boundary based on previous work of Peschelkkaund Legeza [96—98].

1.1 Global, monotonous and fine-grained entanglement loss

Consider the pure ground std€®) of a given regularized physical system which depends on a
particular set of parameters, and let us perform a bipaumtitf the system into two piecésand

B. The density matrix foA, describing all the physical observables accessiblg ie given by

pa = trg(|Q)XQ|) — and analogously foB —. Here we will focus our discussion on the density
matrix for the subsysterA, so we will drop the subinde& from our notation. Let us consider

a change in one of the parameters on which the resultanttdemairix depends, say, parameter
“t”, which can be an original parameter of the system, or bde@lto the size of the region

A. To be precise, we perform a change in the parameter spaveiftto t,, with t; > t;. This
involves a flow in the space of reduced density matrices o) to p(t2), as represented in
Figl1.

p(t,)

p(L)
Figure 1.1: A flow in the space of density matrices, driven agametet.

We wish to understand how this variation of the parameterslthe inner structure of the
ground state and, in particular, how it modifies the entangle between the two party8,and
B. Because we are considering entanglement at tfferéint points, andt;, let us assume that
the entanglement betweénand B is larger at the point; than at the point,, so we have an
entanglement loss when going frdito t.

Our characterization of this entanglement loss will pregriirough three stages, refining at
every step the underlying ordering of quantum correlatiorfsese three stages will be respec-
tively calledglobal, monotonousindfine-grainedentanglement loss.

Global entanglement loss.- A possible way to quantify the loss of entanglement betw&en
andB when going front; to t, is by means of the entanglement entr&@gy(t)) = —tr(o(t) log, p(t)).
Since at, the two partys are less entangled that atve have that

S(o(t1)) > S(o(t2)) , (1.1)

which is a global assessment between pdinendt;. This is what we shall caljlobal entan-
glement loss.
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Monotonous entanglement loss.- A more refined condition of entanglement loss can be ob-
tained by imposing the monotonicity of the derivative of #émanglement entropy when varying
the parametert”. That is, the infinitesimal condition

S(p(t)) > S(o(t + dt)) (1.2)

implies a stronger condition on the structure of the groutadesunder deformations of the
parameter along the flow in This monotonic behavior of the entanglement entropy istwiea
shall callmonotonougntanglement loss.

Fine-grained entanglement loss.- When monotonous entanglement loss holds, we can won-
der whether the spectrum pft) becomes more and more ordered as we change the value of the
parameter. It is then plausible to ask if it is possible to enskonger claims than the inequali-
ties given by Eq.T]1 and Eg.1.2 and unveil some richer stracfThe finest notion of reordering
when changing the parameter is then given by the monotorjarization of the eigenvalue dis-
tribution along the flow. If we calp(t) the vector corresponding to the probability distribution

of the spectrum arising from the density operatfi}, then the infinitesimal condition

B(t) < At + di) (1.3)

along the flow int reflects a strong ordering of the ground state along the fldwis & what
we call fine-grainedentanglement loss, because this condition involves a wioaler of in-
equalities to be simultaneously satisfied. This Chapterei®id to this precise majorization
condition in diferent circumstances when considering+(1)-dimensional quantum systems.
For background on majorization, see Appendix A.

1.2 Majorization along parameter flows in(1+1)-dimensional quan-
tum systems

Our aim in this section is to study strict continuous mafatiian relations along parameter flows,
under the conditions of monotonicity of the eigenvalueshef teduced density matrix of the
vacuum in parameter space. Some of these flows indeed ceindid renormalization group
flows for some integrable theories, as is the case of the tgiagtum spin chain.

Before entering into the main theorem of this section, lepedorm a small calculation
which will turn to be very useful: we want to compute the restlidensity matrix for an interval
of lengthL of the vacuum of a conformal field theory in€1) dimensions — see Appendix B for
background on conformal field theory —. With this purposeziéq) = g/t (q(L0+L°)) denote
the partition function of a subsystem of sizg21, 36], whereq = et 1t = (in)/(In(L/n)), n
being an ultraviolet cut4d, andLy and Ly the Oth Virasoro operators. Lét = ¢/12 be a
parameter that depends on the central charge and thereftine aniversality class of the model.
The unnormalized density matrix can then be written&g(-o*10), since it can be understood
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as a propagator and.{ + Lo) is proportional to the generator of translations in time kicl
corresponds to dilatations in the conformal plane — [21]tH&rmore, we have that

tr(go*0)) = 1+ nyqf™ + mpg2 + -+ - (1.4)

due to the fact that the operatdip(+ fo) is diagonalized in terms of highest-weight stated):
(Lo+Lo)Ih, hy = (h+h)Ih, h), withh > 0 andh > O; the codficientsay, az,... > 0,a; # a; Vi # |
are related to the eigenvalues d&fy(+ Lp), andng, ny, ... correspond to degeneracies. The

normalized distinct eigenvalues of = ﬁq)q‘bq('-o”-o) are then given by
1= 1
1= (1+ MQet + Npge2 + )

g

2= (1+nQ@ +npge2+---)

10 2q (1.5)

¥(-1)

A g

- (1+ N2t +npge2 +---)°

We are now in conditions of introducing the main result o tsection, which can be casted
into the following theorem:

Theorem 1.1: Consider a(1 + 1)-dimensional physical theory which depends on a set of
real parametersy = (g1, g2, . . .), such that

e there is a non-trivial conformal poirg*, for which the model is conformally invariant in
the bulk,

e the deformations frongj* in parameter space in the positive direction of a given unity
vector & preserve part of the conformal structure of the model, ihathe eigenvalues
of the generic reduced density matrices of the vacy(gh are still of the form given
by EqLLD with some parameter-dependent factég$, dor values of the parametegs=
g + aé, and

¢ the factor @) is a monotonic decreasing function along the directiorepthat is, we
demand that
da(g)

& (Vga(g) = o S0 (1.6)

along the flow.

Then, away from the conformal point there is continuous nirgton of the eigenvalues
of the reduced density matrices of the ground state alondltiein the parameterg in the
positive direction ot (see Fid.T]2), that is,

p(1) < p(32) .

1.7
=g +a& g.=g +aé a >a. (1.7)
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—

g*

Figure 1.2: A possible flow in the space of parameters in thection ofé.

Proof: Let us define the quantitf(q) = (1 + nig®* + nq®2 + - - -), where it is assumed
thatq = q(g), for values ofg along the flow ina. Notice that at conformal point&(q(g*)) is
not invariant under modular transformations, as opposed tpdhttion functionZ(q(g*)). The
behavior of the eigenvalues in terms of deformations wipeet to the parameterfollows
from . .

Q) _ Z@-1dg _

da g da” ’ (1.8)
and therefore
diy, d( 1

Becausel; is always the largest eigenvalia, the first cumulant automatically satisfies contin-
uous majorization along the considered flow. The variatibthe other eigenvalueg (I > 1)
with respect ta reads as follows:

dy  d (gD
da E(Z(q))
qe-v-t Z(g) -1\ dg
T v e o

Let us concentrate on the behavior of the second eigenvalué/e observe that two fferent
situations can happen:

o if

a—2(9)_1) 0 1.11
(1 Z@ ) (L)

then sincey(-1) > a1 VI > 2, we have that

(a’(|_1) - Z(gzq; l) >0Vl >2, (1.12)

which in turn implies that

da
— [>2. 1.1
Ja <0Vl > (1.13)
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From this we have that the second cumulant satisfies

dida+42) _ d [Z /h] >0, (1.14)

da da —

thus fulfilling majorization. The same conclusion extendsilky in this case to all the
remaining cumulants, and therefore majorization is satidfiy the whole probability dis-

tribution.
o if .
Z(q) - 1)
a1 - ———|<0, (1.15)
( Z(q)
then g
Ao

and therefore
d(11 + A2) -0

- , (1.17)

so the second cumulant satisfies majorization, but nothamgbe said from the previous
three equations about the remaining cumulants.

Proceeding with this analysis for each one of the eigengalesee that, if these are monoton-
ically decreasing functions @ then majorization is fulfilled for the particular cumularider
study, but sinceri,1 > «a; Yi we notice that once the first monotonically increasing eigkre

is found, majorization is directly satisfied by the wholetdimition of eigenvalues, therefore
p(G1) < p(G2) if G = §* +aé, Go = §* +a’g anda’ > a, as claimedno

An interesting application of Theorem 1.1 comes whenavean be related to the scale of
a renormalization group transformation. Then it can be tstded as a proof of fine-grained
entanglement loss along a renormalization group flow forriquéar set of integrable theories,
namely, those theories which fulfill the hypothesis of o@ditem. We stress that, while it would
probably be possible to obtain results based on perturb#tieory in the neighborhood of the
conformal point for non-integrable theories, our theorsnbased on the alternative approach
of completely non-perturbative results under the asswnpif integrability of the theory along
the flow. This assumption is naturally fulfilled by many irgsting models: we wish to illustrate
this point with the analytical examples of similar situasdor the Heisenberg arXly quantum
spin chains with a boundary. At this point we wish to remarkvad that, for those theories
depending only on one parametgrthe monotonicity in the change of the parameter along a
renormalization group flow between two fixed points is tliveance between two zeros tife
functiong = —%, | being the scale of the renormalization group transformatian only be
either positive or negative, thus implying the monotonicif the parameter when flowing from
one fixed point to the other. Notice that our claim, which igariaation of the reduced density
matrices of the vacuum, is stronger.
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A majorization lemma

As a previous step in our derivations, let us state a usefahla about majorization theory

which we shall constantly use in the forthcoming sectiong. réfer the reader to Appendix A

for mathematical definitions and more background on maitiom theory. The lemma reads as
follows:

Lemma 1.1 [95]: If p1 < P2 and i < G, then(P1 ® d1) < (P2 ® G2). This means that
majorization is preserved under the direct product openati

Proof: If By < P2 anddy < G thenpy = DpP2 anddy = DG WhereDy, Dq are both doubly
stochastic matrices. Thereforg1(® di) = (Dp ® Dg)(P2 ® G2), where Dp ® Dg) is a doubly
stochastic matrix in the direct product space, andB®(q;) < (P, ® b). O

1.2.1 Quantum Heisenberg spin chain with a boundary

Consider the Hamiltonian of the Heisenberg quantum spimakiih a boundary

H=> (of0k, +olol, + Actol,) (1.18)
i=1

whereA > 1 is the anisotropy parameter. This model is non-criticahim region defined by
A > 1 and critical atA = 1. Notice that, since this is a uniparametric theory which be
mapped to a Gaussian free theory, any renormalization grangformation must be reflected
in a change of the only existing parameter. Thus, the flov imust necessarily coincide with a
renormalization group flow.

From the pure ground state of the system, we trace oufNiH& contiguous spins =
1,2,...,N/2, getting an infinite-dimensional density matgix in the limit N — oo which
describes half of the system, and such that it can be wrigemthermal density matrix of free
fermions [96-98]. Its eigenvalues are given by

1 e
pA(nO, n]_, ceey noo) = —e Zk:o Nk ek
VAN

pa(no)oa(ng) - - - pa(Neo) (1.19)

with pa(nk) = Z—lke‘”kfk, whereZZ = (1 + e %) is the partition function for the mode ny = 0, 1,
fork=0,1,... ,Aoo and with dispersion relation

e = 2k arcoshd) . (1.20)

The physical branch of the function arcosh{s defined forA > 1 and is a monotonic increasing
function of A. On top, the whole partition functioB, can be decomposed as an infinite direct
product of the dierent free fermionic modes:

Zy = ﬁ (L+e%). (1.21)
k=0
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From the last equations, it is notflicult to see thap, < pa- if A < A’. Fixing the attention
on a particular modg, we evaluate the derivative of the largest probability ftis'mode,PK =
(1 + e*)~L. This derivative is seen to be

dpP _ 2k o

dA (1+ea)2VAZ-1
fork = 1,2,...00 and O fork = 0. It follows from this fact that all the modes independently
majorize their respective probability distributions &asncreases, with the peculiarity that the
Oth mode remains unchanged along the flow, since its protyatbistribution is alwaysi, %)T.
The particular behavior of this mode is responsible for thpearance of the “cat” state that
is the ground state for large values ®f notice that in that limit the model corresponds to
the quantum Ising model without magnetic field —. These tgstbgether with the Lemma
1.1, make this example obey majorization along the flow inpda@meter, which can indeed be
understood as a renormalization group flow because of tls@meanentioned at the beginning
of the example.

(1.22)

1.2.2 QuantumXY spin chain with a boundary

Similar results to the one obtained for the Heisenberg modelbe obtained for a flierent
model. Let us consider the quantuXtY-model with a boundary, as described by the Hamilto-
nian

H=- Z ((l ; ) ool + d ; ) 0'?/0{(1 + /lO'iz) , (1.23)
i=1

wherey can be regarded as the anisotropy parameteriaas the magnetic field. The phase
diagram of this model is shown in Hig.1.3, where one can saetkiere exist dferent criti-
cal regions depending on the values of the parameters,spameing to dierent universality
classes [37—40, 99]. Similarly to the previous examples thbdel is integrable and can be
mapped to a Gaussian free theory with a mass parameter degemda particular combination
of botha andy once the kinetic term has been properly normalized (se¢.[22normalization
group flow can then be understood as a set of flows in the planaody.

Consider the ground state of EQ.1.23, and trace out thegranis sping = 1,2,...,N/2
in the limit N — co. The resulting density matrix, ) can be written as a thermal state of free
fermions, and its eigenvalues are given by [96-98]:

Pan(No N, Ne) = o Zicohek, (1.24)
’ Ziy)
wheren, = 0, 1, and the single-mode energigsare given by
2k if A1<1
A AN (1.25)
(2k+1e, ifa>1,
withk=0,1,...,c. The parametet is defined by the relation
[(V1-x2
_ V=X (1.26)

OV
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A XX Ising

critical XY

\ critical Ising

critical XX

0 1 Y

Figure 1.3: Phase diagram of the quantiyrmodel.

I(X) being the complete elliptic integral of the first kind

I(X) :fﬂ/zL
01— x2sirk(9)

(B -T)y, A< (1.28)
“WIED, s |

where the conditiom? + y? > 1 is assumed for a correct behavior of the above expressions
(external region of the Baruoch-McCoy circle [99]).

We observe that the probability distribution defined by tigervalues op.,) is again the
direct product of distributions for each one of the sepanadeles. Therefore, in order to study
majorization we can focus separately on each one of thesesnivcthe same way as we already
did in the previous example. We wish now to consider our aisly terms of the flows with
respect to the magnetic fieldand with respect to the anisotropyin a separate way. Other
trajectories in the parameter space may induéedint behaviors, and a trajectory-dependent
analysis should then be considered for each particular case

(1.27)

andx being given by

Flow along the magnetic fieldd

We consider in this subsection a fixed valueyafhile the value oft changes, always fulfilling
the condition1? +y? > 1. Therefore, at this point we can dregrom our notation. We separate
the analysis of majorization for the regions<1d < oo and++/1—y2 < 1 < 1 for reasons that
will become clearer during the study example but that alyezh be realized just by looking at
the phase space structure in Eigl1.3.
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Regionl < A < c0.- We show thap, < p, if 2 < A’. In this region of parameter space, the
largest probability for the modeis P'j = (1+ e %)L, The variation oiP'j with respect tot is

dpk —(2k+1)e
T (k+lemr e de (1.29)
da (1+ e @+De)2 dd

k
A direct computation using Hq. 1?6, Eq.1.27 and]EEZAsthhat% > 0. Therefore,% >
0 fork = 0,1,...,0. This derivation shows mode-by-mode majorization wheincreases.

Combining this result with the Lemma 1.1, we see that thisrgpta obeys majorization.

Region++/1-792 < A1 < 1.- For this case, we show thag < py if 1 > A’. In particular, the
probability distribution for the Oth fermionic mode remaiconstant and equal té,(%)T, which
brings again a “cat” state for low values &f Similarly to the latter case, the largest probability
for modek is P = (1 + e7%)~2, with

I(V1-x%)

€& = zmT = ke, (1.30)

andx = (4/12 + 2 — 1)/y. Its derivative with respect td is

dPX 2ke %€ de

T Grerpd (1.31)

k
Itis easy to see that this tin@ < 0, and thereforéi% <0fork=12,...,00,which brings

majorization individually for each one of these modes whetecreases. The modte= O calls

for special attention. From HQ.T131 it is seen ﬂ%ﬁ = 0, therefore the probability distribution
for this mode remains equal té,(%)T all along the flow. This is a marginal mode that brings
the system to a “cat” state that appears as ground state sfstem for low values of. Notice
that this peculiarity is rooted on the particular form of tlispersion relation given in Hg.T125,
which is proportional to Rinstead of R + 1 for this region in parameter space. These results,
together with the Lemma 1.1, prove that this example alddl$unajorization.

Flow along the anisotropyy

In this subsection, the magnetic fields fixed and the anisotropy is the only free parameter
of the model, still fulfillingA? + y?> > 1. Thus, at this point we can dropfrom our notation.
We will see thap, < p, if ¥ > 9/, in the two regions k 1 < coand++/1-y?> <1< 1. In
particular, in the region- /1 -2 < A < 1, the probability distribution for the Oth fermionic
mode remains constant and equal%og)T. Let us consider the biggest probability for the mode
K, P§ = (1+ e %)L, with g = we, where

_ {Zk, !f 1<1 (1.32)

(2k+1), ifa>1,



22 Chapter 1. Majorization along parameter and renormalizaion group flows

ande as defined in the preceding sections. It is easy to verify that

Py __we dedx
dy  (1+ew«)2dxdy
fork=0,1,...,0if A >1andfork =1,2,...,0if 1 < 1. The mode&k = O for 1 < 1 needs

of special attention, smcg— = 0, and therefore the probability distribution for this mode
remains constant and equal %) %)T all along the flow. These results, together with the Lemma
1.1, show that this case obeys again majorization along dkeifl the parameter.

(1.33)

1.3 Majorization with L in (1 + 1)-dimensional conformal field the-
ories

A similar study to the one presented in the previous sectlmutmajorization along flows
in parameter space can be now performed exclusively at thisroal point for flows in the
size of the block under consideration. Here we present alyta@d derivation of majorization
relations for any (¥ 1)-dimensional conformal field theory without boundaries n the bulld

— in the bipartite scenario when the size of the considerédystems changes, that is to say,
under deformations in the interval of the accessible refpomne of the two partys. This size
will be represented by the length of the space interval for which we consider the reduced
density matrixo_ after tracing out all the degrees of freedom correspondintpé rest of the
universe. Our main result in this section can be casted @ddllowing theorem:

Theorem 1.2:p| < pr- if L > L’ for all possible(1+1)-dimensional conformal field theories
in the bulk.

Proof: Since the factorg are now monotonic functions of the size of the intetvathe proof
of this theorem is analogous to the proof of Theorem 1.1, thighonly exception that now the
cumulants are monotonically decreasing (instead of isingg functions along the flow ih.
Taking this into account, it immediately follows that < o if L > L’. This proof is valid
for all possible (1+ 1)-dimensional conformal field theories in the bulk, sincerily relies on
completely general assumptions.

1.3.1 Critical guantum XX spin chain with a boundary

Let us give an example of a similar situation to the one preskim Theorem 1.2 for the partic-
ular case of the quantudiX-model with a boundary, for which the exact spectrurpo€an be
explicitly computed. The Hamiltonian of the model withouagmetic field is given by

H= Z((ri 1t O 0'|+1) (1.34)

aThe case in which boundaries are present in the system mysbberly considered from the point of view
of the so-calledboundaryconformal field theory. This has been done by H.Q. Zhoaletn [100]. For technical
background on conformal field theory without boundaries, Appendix B.
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The system as described by this model is critical since igjd@ags. Notice that the ultraviolet
cut-of coincides with the lattice spacing and the theory is nauralgularized, henceg = 1.
Taking the ground state and tracing out all but a block,& 1 ., L contiguous spins, the density
matrix p. describing this block can be written, in the largdimit, as a thermal state of free
fermions [96—98]:
et
= 1.35

PL ZL ( )
Z, being the partition function for a giveh, H’ = Y73 ed/dx, with fermionic creation and
annihilation operatord*, dy and dispersion relation

72

:2InL

€ (2k+1) k=0,1,...,L-1. (1.36)
The eigenvalues of the density matpixcan then be written in terms of non-interactive fermionic
modes

1 L1
— — 2ke0 Nkék
No,N,...,NL_1) = —& 2k=0
pL( 0, 111 L l) ZL (137)

= pL(No) - pL(NL-1)

with p(n) = e ™%, whereZ = (1 + e %) is the partition function for the modk, and

ng =0,1, Vk. It Lis worth noticing that the partition function of the wledblockZ,_ factorizes as
a product over thé modes:

L-1
zi=]]a+e9). (1.38)
k=0

Once the density matrix of the subsystem is well chara@énizith respect to its siZe, it is
not difficult to prove thap_ < p.- if L > L’. In order to see this, we will fix our attention on the
majorization within each mode and then we will apply Lemniafar the whole subsystem. We
initially have to observe the behavior inof the largest probability defined by each individual
distribution for each one of the modes, thaﬂ?%,: 1/Z'|f =(1+e%) L fork=0,1,...,L-1.

It is straightforward to see that

dpt e % deg
E_mad)’ (1.39)
which implies thaP‘E decreases if increase¥k. This involves majorization within each mode
k=0,1,...,L-2when decreasing by one unit. In addition, we need to see what happens with
the last modé& = L—1 when the size of the system is reduced filoto L—1. Because this mode
disappears for the system of size- 1, its probability distribution turns out to be represenbgd
the probability vector (10)", which majorizes any probability distribution of two conmamts.
Combining these results with Lemma 1.1, we see that this pkafar the quantunxXX-model
provides a similar situation for a model with a boundary ® ¢me presented in Theorem 1.2.
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1.4 Conclusions of Chapter 1

In this Chapter we have analyzed majorization relationsgloarameter and renormalization
group flows for a variety of models in (1) dimensions. We have also provided in a rigorous
way explicit and detailed proofs for all the majorizatiom@xctures raised in some papers on
gquantum spin chains [37, 38, 95]. In order to be more specific:

¢ \We have proven the existence of a fine-grained entanglerossfdr (1+ 1)-dimensional
guantum systems along uniparametric flows, when pertamgin parameter space pre-
serve part of the conformal structure of the partition fiorgt and some monotonicity
conditions hold as well. These flows may coincide with reralimation group flows in
some cases. We also considered similar situations whicheareated analytically, aris-
ing in the Heisenberg andY models with a boundary.

¢ We have also developed a completely general proof of maijtioiz relations underlying
the structure of the vacuum with respect to the size of theldldfor all possible (1+ 1)-
dimensional conformal field theories in the bulk. An examgfl@ similar situation has
been considered for the particular case ofXemodel with a boundary.

These results provide solid mathematical grounds for tietence of majorization relations
along renormalization group flows underlying the structfrithe vacuum of (3 1)-dimensional
quantum spin chains. It would be interesting to relate tlseilte of this Chapter to possible
extensions of the-theorem [75] to systems with more than«11) dimensions. While other
approaches are also possible [76—88], majorization may lieicue tool in order to assess
irreversibility of renormalization group flows in terms ofgperties of the vacuum only, and
some numerical results in this direction have already bdmermed in systems of fiierent
dimensionality for flows in the parameter space [101, 104je &nalytical derivation and the
consideration of the consequences for higher-dimensisygtems of the properties presented
here for (1+ 1) dimensions remains an open problem.



Chapter 2

Single-copy entanglement in
(1 + 1)-dimensional guantum systems

How much entanglement is contained in a given quantum mady-Bystem? This simple but
fundamental question has been considered for systemstolase at quantum phase transitions
by means of analyzing very fiierent entanglement measures [17, 31, 36—44,56,103-118]. A
these diferent ways of measuring entanglement lead to results whintplement each other
and which help us to understand the precise way in which thergt state of critical models
is organized. While the concurrence measures the pairmissmglement that is present in the
system between two of its specific constituents [119], thargglement entropy measures the
entanglement that appears between twiedent blocks in a bipartition, in turn showing very
interesting connections to the entropic area law foundyetesns such as black holes [31-35].
A detailed analysis of the entanglement entropy in critgpaintum spin chains unveils a uni-
versal logarithmic scaling law with the size of the block andonsideration, which admits an
explanation in terms of the underlying conformal field thewor (1 + 1) dimensions [36—44].
Furthermore, it is now well understood that the good perforoe of density matrix renormal-
ization group algorithms in (% 1) dimensions relies very much on this propEv[b}(S].

Our aim in this Chapter is to study an entanglement measuiehwhery much like the
entanglement entropy, is proven to have intriguing scatirgperties for (1+ 1)-dimensional
quantum systems. We call this meassirgle-copy entanglemefit13,120], and its operational
definition comes naturally motivated by a practical reasanile the entanglement entropy mea-
sures the average amount of entanglement possible to ieediftom a bipartite system in the
limit of having an infinite number of copies of the system [l 2fhe single-copy entanglement
measures the amount of entanglement present in the moigiceshse of having jusinecopy
of the system, in a way to be precisely defined later. As wd shal we are able tanalytically
compute the asymptotic leading scaling behavior of thelsingpy entanglement for all (11)-
dimensional conformal field theories in the bulk, togethé&hvts first-order correction. At that
point in our derivations a surprise will appear: the entangnt contained in a single specimen
of a critical (1+ 1)-dimensional system is seen to be, asymptotichfif the entanglement that

aThe relation between scaling of entanglement and the pedice of classical numerical simulations foffeli-
ent quantum systems will be addressed in detail in Chaptansl 4.

25
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is available in the ideal case of having an infinite numberogfies. This result is reinforced by
an analysis from the point of view of quasi-free fermionisteyns in (1+ 1) dimensions which
leads again to similar conclusions: whenever the entarggi¢entropy scales logarithmically in
the size of the system, the single-copy entanglement saajgsptotically as half of the entan-
glement entropy. Furthermore, and in order to make our stuole complete, we also analyze
the behavior of single-copy entanglement away from ciliticéor the specific example of the
XY quantum spin chain. Let us then begin our study by formalfinde what the single-copy
entanglement is.

2.1 Operational definition of the single-copy entanglement

Let us ask ourselves the following question: how much eriéangnt is contained in an infinite
number of copies of a pure bipartite systémpg)? Let us be more specific with the term
“how much”, by posing the questionftirently: what is the maximal rate at which EPR-pairs
% (10)al0yg + |1Yal1)g) can be distilled from an infinite number of copies of a purealtipe
systemlag), just by invoking local operations and classical commutioca(LOCC) between
the two parties? The answer to this question was originallyndé by Bennett etl. in [121]:

if we are able to distillM EPR-pairs fromN copies of a pure bipartite systelfiag), the rate
M/N coincides, in the infinite-copy limit, with the entanglementropy between the two partys,
namely

lim 3= S(o) = ~1r{oalogz o) = S(os) = ~tr(ps 10g; e). (2.1)

pa andpg respectively being the reduced density matrices of the @rtypA (Alice) and B
(Bob). This situation corresponds to the one represent&iz].

Alice Bob

Figure 2.1: Scenario defining the entanglement entropgefdind Bob share an infinite number
of copies of the bipartite system, and wish to distill EPRphy performing LOCC.
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While the above definition of entanglement entropy obvipusbkes sense, having an in-
finite number of copies of the system at hand is an unreakéti@tion from the experimental
point of view. Thus, let us now ask ourselves this varianthef above original question: how
much entanglement is contained in a single specimen of a lppeatite systemjyag)? Or,
equivalently, what is the largest entanglement contertahg apparatus could potentially dis-
till by LOCC from just one bipartite entangled system at Haridhis scenario is represented in
FiglZ2.

Alice Bob

Figure 2.2: Scenario defining the single-copy entanglem@ite and Bob share only one copy
of the bipartite system, and wish to distill a maximally engked state of the largest possible
dimension by performing LOCC.

The maximum entanglement that it is possible to obtain bglldison with LOCC in the
single-copy case can be measured by the largest dimensamaekimally entangled state that
can be distilled with certainty from the single specimenatflib, for a pure bipartite stat¢ag)
with reduced density matrices andpg, we write for the single-copy entanglement

Ei(oa) = E1(pB) = logy(M) (2.2)
if
lYaB) — Im) under LOCC, (2.3)
where
1 M
= — 2.4
) = —= qz{ DalDe (2.4)

is a maximally entangled state of dimensigh Now, we recall the result that the interconver-
sion of bipartite pure states under LOCC in the single-cagseds governed by the following
majorization relation for the reduced density matriceg:[15

[Wag) — |$AB> under LOCC < PA < 5A s (25)
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wherep, is the reduced density matrix of the converted sgagg) for the partyAE. Replacing
in the above conditiofyag) = [¥m) andpa = ﬁ]IM, Iy being theM x M identity matrix, and
considering the definition of majorization between probgbdlistributions in terms of a set of
inequalities to be satisfied by partial sums of its companentee Appendix A —, we find the
inequality

/11$$=>MS/1—11, (2.6)

A1 being the largest eigenvalue @f. Given the above upper bound fiot, one finds that

E]_(pA) = - |ng A1 = E]_(pB) . (27)

Therefore, the single-copy entanglement can be directlypeed by looking only at thiargest
eigenvalueof the reduced density matrix of the system under considerafT his situation is
very different from that of the entanglement entropy, where all tgereialues of the reduced
density matrix contribute to the final quantity.

2.2 Exact conformal field theoretical computation

Now we wish to show the exact and analytical computation efdimgle-copy entanglement
in the case of (& 1)-dimensional conformal field theories in the bulk. We neththat the
systems described by these theories correspond to thegontilimit of a variety of regularized
guantum critical theories defined on a chain. For techniaakround, see Appendix B.

As we saw in the previous Chapter, the reduced density nfatr block of sizel. describ-
ing the vacuum of a (* 1)-dimensional conformal field theory can be written as B&1,112]

— = q¢/124(Lo+Lo)

ZL(Q)q f ’ (2.8)
wherec is the central charge of the theotyy and Ly are the Oth holomorphic and antiholo-
morphic Virasoro operatorg, () is the partition functiong = €7, andr = (ix)/(In(L/n)),

n being a regularization ultraviolet cutfo For critical quantum chains we have that 1,
which corresponds to the lattice spacing, and which is tormerstood in our forthcoming
calculations.

The largest eigenvalue of the density magrixcorresponds to the zero mode af (+ fo),
that is,

PL

1
= ——q 912, 2.9
1 ZL(q)q (2.9)

since for this mod¢0) we have thatl(y + Lo)|0) = 0. We then get a first expression for the
single-copy entanglement:

Eapv) = —log, 11 = log, (Z.(6)o*?) . (2.10)

bOf course the same relation holds as well for the p8tty
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The leading behavior for the partition function can be cotaguwvhenL is large by taking
advantage of its invariance under modular transformatidriee needed transformation corre-
sponds tar — —1/7, which amounts t& (q) = Z,(§), q = e 27/t § = e2InL = 2-2log L |t

is now possible to expand the partition function in power§,dfince all the eigenvalues of the
operator Lo + Lg) are positive, and find that the leading contribution org@s from the central
charge:

~ C N 1 (o 1
log, Z, (§) = —1—2Iog2q+o(t) = élogzL+O(E) . (2.11)
This result translates into an explicit expression for ihgle-copy entanglement

_g(ﬂ|0929)2+o(}).

c
Eulor) = glogeL -3 log, L L

(2.12)

We wish to point out that the above result is exact up to patyiabcorrections in AL since no
further powers of 1log, L appear in the expansion whernis large.

Similar conformal field theory manipulations were used tovperthat the von Neumann
entropy for the same reduced density matiixs given by [36]

S(oL) = —g log, G + O(%) , (2.13)

which implies the following direct relation between entygnd single-copy entanglement:

E1(o1) = 55000 -

¢ (nlog, &) . (Iog2 L) ’ (2.14)

6 log,L L

where the last subleading correction is easily calculajecbimparing the results from [36] and
our expression given in Hq.Z112. It should be noted heretieaabove result completely fixes
the leading eigenvalue of the reduced density matrix of thekbof sizelL to be dictated by its
entropy within the largd- limit, that is,

. A1
L'[nw(—zs(m)m) -1, (2.15)
Corrections to this limit can be obtained from [Eq.2.14. ®uimarkably, we also notice that all
the eigenvalues will inherit the same leading behavior afférdby their subleading corrections
controlled by the conformal weights corresponding to thivensality class of the particular
model in consideration.

2.3 Exact computation in quasi-free fermionic quantum spirchains

We aim now to reinforce the previously achieved result bgstigating the same question from
an alternative point of view, namely, we investigate alhgiationally invariant quantum spin
models which can, under a Jordan-Wigner transformationyriteen as an isotropic quadratic
Hamiltonian in fermionic operators.
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The Jordan-Wigner transformation relates the Pauli opesah the quantum spin system to
spinless fermionic operato(s;} obeying the fermionic anticommutation relations

{cj,a} = O
{c},cl} =0
chad = 6k, (2.16)
according to
=
of = EH(l—Zc;cn)(cr+c|)

-1
1
o = 5 ]_[(clT —c)(1-2ccn)
n=1

; 1
ol = co- 5 (2.17)

Consider now an infinite quantum spin system ir(1) dimensions that corresponds to
a general translationally invariant isotropic quasi-ffeamionic model. These correspond to
chain systems whose Hamiltonian can be cast into the form

H=> A (2.18)
I,k

with Ay = A € R. The ground state dfl is a quasi-free fermionic state, that is, a state that is
completely characterized by the second moments of the daimoperators. Notice that, while
some of the spin chains described by this setting can bedmmesi as well within the framework
of conformal field theory in (% 1) dimensions, there may also be models that do not corrdspon
to any such conformal field theory.

Our claim is the following: if the entropy of entanglementisizes

S(oL) = &logy(L) +O(1) (2.19)

for some¢ > 0, then the single-copy entanglement satisfies

Ex(p1) = 5S(00) + O(1). (2.20)

That is, if we find that the entropy of entanglement scalesnasgtically as the logarithm df

— as typically observed for this class of systems at criticalthen we can infer that the leading
behavior of the single-copy entanglement will asymptdiiche exactly one half of it. Notice
that this does not fix such a relationship in the case thagxXample, the system is gapped and
the entropy of entanglement saturates (we shall considexample of non-critical behavior
within the next section). Let us now show how we arrive to thevjus statement.
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The reduced state of a block of lendthis entirely specified by the eigenvalues of the real
symmetricL x L Toeplitz matrixT, with I-th row being given byt(;,1,t .2, ...,to, ..., t ). The
latter numbers are for an infinite quasi-free fermionic duanchain found to be

- % f ” g(k)e ™ dk, (2.21)
0

whereg : C — C is the so-called symbol [99, 122, 123], which essentiallgrabterizes the
fermionic model. The fact that, is a Toeplitz matrix reflects the translational invariantéhe
model. The real eigenvalues ©f will be labeled ags, ...u. € [-1, 1]. They can be found from
the zeroes of the characteristic polynontal C — C,

F(2 = det(Z. - Ty) . (2.22)
The entropy of entanglement can then be obtained as [3908(0115]

L
S(ou) = Y fs(Lm) (2.23)
1=1

wherefs : R x C — C is defined as

= (S (P) (P o

In fact, we can write [39, 40, 108, 115]

F'@ 4,
= ) (2.25)

The contour of the integration in the complex plane is shawRig[Z3. In turn, we may also
write for the single-copy entanglement [113]

S(oL) = I|m I|m —

L
Ex(o) = ) f1(0.m) (2.26)
I=1
in terms of the abovgy, ..., u, where nowf; : R* x C — C is to be defined as
2\1/2
fi(e,2) = — Iogz(1+(zz+8)) . (2.27)
Respecting the cuts of the logarithm (see [113]), we may rastEe; (o ) into the form
F'@ 4,
E = I|m I|m — 2.28
o) = =3¢ (2.28)

Now we take advantage of the fact thigt is a real symmetric Toeplitz matrix, which means
that we can assess the asymptotic behavior of their detantsirusing proven instances of the
Fisher-Hartwig conjecture [39, 40,99, 108, 115, 122, 128% wish to remark at this point that
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(Dt
o

Figure 2.3: Contour of integration to be taken in case of ltle¢ghentropy of entanglement and
the single-copy entanglement.

the observation that we only refer to proven instances ofFtheer-Hartwig conjecture derives
from the fact that we are only considering isotropic modéR8]. Concerning the function
F : C — C, the Fisher-Hartwig conjecture allows us to write

F'@

FQ) =a(2L - b(2)log, L + O(1) (2.29)
in the largek limit, where
R
b2 = -2 AAB@. (2:30)
r=1
with g : € — C such that [108]
1 z+1
zZ— o Iogz(ﬁ) . (2.31)

The numberR, in turn corresponds to half the number of discontinuitiéthe above symbol
g(k) in the interval [Q27). Now, if we assume the validity of the logarithmic scalinfytioe
entropy given in the expression of Eq.2.19, we know thatessarily,

I|m Ilmff3(1+s 2a(2dz=0, (2.32)

since no linear dependencelimust appear. Moreover, we know ti#go.) > Ei(oL), which
can easily be proven from their respective mathematicahitiefis — apart from the intuition
that many copies of a system may help in entanglement disitl —. Therefore, in the large-
limit we must also necessarily have

Llinollmffl(s 2a(2dz=0. (2.33)

Consequently, we only have to consider the logarithmicdiyergent term. For the entropy of
entanglement the only relevant contour integral reads

Is = lim lim — f fs(1+ &,2)b(2)dz. (2.34)

£—06—-0

In turn, for the single-copy entanglement the relevant@anintegral becomes

[, = lim I|m — f fi(e, 2b(2)dz. (2.35)

e—06—
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Taking into account thalb(z) is analytic outside the interval-[L, 1], the contributions of the
circle pieces vanish in the two cases. Hence, we finally aatv

S(oL)

R !, fs(Lx
= j:ldx 1 log,(L) + O(1)

1
Eio) = n—Rz j: ldxfll(_o’x);) logy(L) + O(1). (2.36)

Sincefy(0, X) = —log,((1 + [x])/2) for x € [-1, 1], we have that within the largedimit,

S(oL) g log, L + O(1)

Ea(oL)

g log, L + O(1), (2.37)

which in turn implies the validity of the expression that weiapated in E.Z20. We have
therefore proven that, in this class of models, whenevesylséem has a logarithmic asymp-
totical scaling of the entanglement entropy, the singlgycentanglement is exactly half the
asymptotically available in the infinite-copy case in itadeng contribution. We wish to remark
as well that, from Eq.Z37, the numtbRiprecisely corresponds to the central charder those
models that are governed by an underlying conformal synynEtr instance, for the quantum
XX spin chain, we have th& = ¢ = 1, corresponding to the universality class of a free boson.

2.4 Single-copy entanglement away from criticality

In this section we exhibit an explicit example for which tledation between single-copy en-
tanglement and entanglement entropy can be demonstragedunedt the critical region. We
consider theXY guantum spin chain with a boundary, with Hamiltonian

S ((L+7) 1-v)
H=- Z; ( 5 ool + 5 0'?/0{(1 +A0?| (2.38)
i=

studied in Chapter 1. Again, we consider the chain of sefinite length with a boundary,
where the sping = 1,2,...,N/2 with N — o have been traced out from the ground state of
the system. The resultant density majsjx,) can be written as a thermal density operator of a
system of spinless fermions with creation and annihilaﬁperatorsdi andd in the following
way [98]:
e +
pun=gem H= Zk: adldy , (2.39)

where

(2.40)

(ke if 1<1
“T Nk + e, ifa>1,
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k € N, anda € R is the parameter controlling the external magnetic figld: 1 corresponding
to the quantum phase transition point. We also have that

[(V1-x?)

0 (2.41)

E=T

[ (x) being the complete elliptic integral of the first kind,

/2 do
1(x) = . (2.42)
fo (1-2si?(@)"”

Furthermorex is related to the parametetsandy defining the model as follows:

« = (VA2 +y2-1)/y, if A<1,
Ay +42-1), ifa>1,

with the condition1? +y? > 1 (external region of the Baruoch-McCoy circle [99]). A comtg-
tion of the single-copy entanglement with respect to thiiti@ning can be performed in terms
of ¢, transforming sums into integrals by means of the Euler-8oin expansion, and finding

(2.43)

n’log,e elog,e

El(pL—»oo,e) = 24 24 + O(e_s) (244)
if 1 <1and
72log,e 1 elog,e
El(pL—mo,e) = gZ = 92 + O(e_f) (245)

24 2712
if 2 > 1. No subleading corrections in powerseoflo appear in the expansion. On the other

hand it is easy to see by explicit evaluation that the entafpgntanglement can be related to
the single copy-entanglement by

0
S(pL—mo,e) = (l - 6&) El(pL—mo,s) s (246)
which shows that
. 1
|IF%(E(p|__>OO’E) - ES(pL_,OO,E)) =0. (2.47)

We notice that the limit — 0 is precisely the limit where the theory becomes critidadt tis
whena — A* = 1. The above expression for fini¢ggives us corrections away from criticality
to the 12 factor between the entanglement entropy and the singhe @sfanglement that has
been discussed in the preceding sections. These correationish as the system approaches
criticality, as we have explicitly seen in this example.
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2.5 Conclusions of Chapter 2

In this Chapter we have analyzed the single-copy entangierttt is, the entanglement that
it is possible to deterministically distill by using locgberations and classical communication
when only one copy of a bipartite system is at hand, in quargystems in (& 1) dimensions.
We have carried our analysis mainly from the point of view @fiformal field theory in (2 1)
dimensions in the bulk and quasi-free fermionic models deoto analyze critical systems, and
also studied the behavior close to but away from criticdbitythe integrable example of theY
guantum spin chain. To be more precise:

e For (1+ 1)-dimensional conformal field theories we have proven thatleading scal-
ing behavior of the single-copy entanglement is exac#if the asymptotic behavior of
the entanglement entropy. The first-order correction tolehaeling term has also been
explicitly computed.

e For quasi-free fermionic quantum systems we have proverifttiee asymptotic scaling
of the entanglement entropy is logarithmic, then the asgiigpscaling of the single-
copy entanglement is also logarithmic, with a prefactot thaxactlyhalf the one of the
entanglement entropy.

e For the example of the semi-infinit&Y quantum spin chain, we have computed the
single-copy entanglement away from criticality and haveesbed that the factor/2
between the entropy and the single-copy entanglemaemtlygecovered when the system
approaches the quantum phase transition point.

The main conclusion is, therefore, that for(l)-dimensional quantum systems at criticality
the single-copy entanglement and the entanglement enfimopysystem described by a reduced
density matrixo typically obey the law

[ S(pL)
leo(El(pL) _ 2) . (2.48)

For systems obeying the above relation we can say thasimge run with a single invocation
of a physical device acting on only one physical system, fioissible to obtain half the entan-
glement per specimen that is asymptotically available @itfinite-copy limit. Furthermore,
all these results also show relationships between thedaeaigenvalue of the reduced vacuum
pL and its full spectrum for a very large class of quantum system







Chapter 3

Entanglement entropy in the
Lipkin-Meshkov-Glick model

Most of the analytical studies of the entanglement propentif quantum many-body systems
close to criticality have been focused on the particulaeaafs(1 + 1)-dimensional systems,
like the ones that we considered in the previous Chaptesms.nk@dels have been discussed so
far in higher dimensions [31, 34, 35, 58-60, 101, 109-1145-131] either due to the absence
of an exact diagonalization of the system or to ficlilt numerical treatment. We can in part
understand this €liculty because of the existing link between the connectivitya system
and its entanglement entropy: one should naively think that bigger the connectivity of the
system is, the bigger the amount of quantum correlatiorsepteén the ground state of the model
should be, especially when the system is close to a quanitioatpoint. A classical numerical
treatment of the model can become then venffioient, as we shall in detail explain in the
forthcoming Chapters 4 and 5. The idea in favor of this iseagimple: the more connected
a system is, the more interactions it has, therefore the mim@ngled its ground state should
be and the more fficult it should be to get its fundamental properties — like gheund-state
energy or the correlation functions — by means of a classigalerical treatment.

Actually, with some insight it is possible to make a non-aete quantitative statement
about the previous idea: given a systeniNgbarticles in @+ 1) dimensionsd being the number
of spatial dimensions of the underlying lattice, if we bedighat at criticality the entropy of
entanglemens is to scale proportionally to the area of the boundary of éggan that separates
the two subsystems under consideration, as is the casemfibaystems [31, 105, 131], then it
is not dificult to check that the entropy of a bipartition of the systeatwieenN/2 contiguous
particles and the rest has to roughly scale like

S~NT. (3.1)

Critical fermionic systems may filer from the above law by means of &log, N) multiplica-
tive factor [109-111]. From the above reasoning we can sadhk bigger the dimensionality
d is — which is directly related to the connectivity of the gyat—, the stronger the scaling of
the entanglement entropy should be. The case of a confgrmalriant critical system with
d = 1 has to be treated separately since the entropy lagmaathmic divergence, as we already

37
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remarked in previous Chapters. This intuitive relationaetn entanglement and connectivity
will be considered again in Chapter 4, when studying thersgalf entanglement in quantum
algorithms.

In this context, the Lipkin-Meshkov-Glick model [132—-13#s drawn much attention since
it allows for a very dicient numerical treatment as well as analytical calcutstid-urthermore,
it provides a useful counter-example of the previous iivaitelation between entanglement and
connectivity: in a system defined on a simplex — totally catee network —, and contrary to the
intuition that we have specified before, the entanglemetitdarsystem behaves if the system
were (1+ 1)-dimensional. This is a consequence of the role playeti&gymmetries within the
description of the model, as we shall see. Entanglement eandoeased by the connectivity,
but can also be “killed” by the symmetries in some cases.

First introduced by Lipkin, Meshkov and Glick in nuclear gios, this model has been
the subject of intensive studies during the last two decadess of interest in order to de-
scribe in particular the Josephsadifieet in two-mode Bose-Einstein condensates [135, 136]. Its
entanglement properties have been already discussedjthtbe concurrence, which exhibits
a cusp-like behavior at the critical point [137—139] as wadlinteresting dynamical proper-
ties [140]. Similar results have also been obtained in thek®model [141-143] which can
be mapped onto the Lipkin-Meshkov-Glick model in some c§%44], or in the reduced BCS
model [145]. Let us mention as well that the entanglemenbpgthas also been calculated for
the anti-ferromagnetic Lipkin-Meshkov-Glick model [146} which the ground state is known
exactly [138, 147]. Here we analyze the von Neumann entropyputed from the ground state
of the Lipkin-Meshkov-Glick model. We show that, at crifitg it behaves logarithmically
with the size of the block& used in the bipartite decomposition of the density matrithvei
prefactor that depends on the anisotropy parameter tunagriderlying universality class. We
also discuss the dependence of the entropy with the madietiand stress the close analogy
of the found results with those of {11)-dimensional quantum systems.

3.1 The Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick model is defined by the Hamiltomia

A

H=-2
N

N
(o-f‘o-}( + ’)/O'iyO')jl) -h Z ol, (3.2)
i=1

i<j

whereoy is the Pauli matrix at positiok in the directione, andN the total number of spins.
This Hamiltonian describes a set of spins one-half locatatieavertices of aN-dimensional
simplex — complete graph, as shown in Eid.3.1 — interacting@verromagnetic coupling > 0
in the xy-spin plane;y being an anisotropy parameter amdn external magnetic field applied
along thez direction.

Given that the model is defined on a simplex, the symmetry upelenutations of particles
allows us to rewrite the Hamiltonian from [EQB.2 in terms lo¢ total spin operatord® =
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Figure 3.1: Complete graph — or simplex — of 8 vertices.

P o{'/2. The previous Hamiltonian can then be expressed as

A 2
H = -0+ (3%~ 70 - N/2) - 2h
_ % _ + 1+ -1
A=+ (3.3)

whereJ? is the representation of spi/2 of the Casimir operator and* = J* +iJY. In the
following, we set for simplicityd = 1 and since the spectrum &f is even under the trans-
formationh < —h [140], we restrict our analysis to the regibn> 0. Furthermore, we only
consider the maximum spin sectbe N/2 to which the full spectrum of the Hamiltonian from
Eq[4I8 belongs. A convenient basis of this subspace imgpany the so-called Dicke states
IN/2, My which are invariant under the permutation of spins and agerstates o8 and J?
with eigenvaluesN(N + 2)/4 andM = —N/2,-N/2+1,...,N/2 - 1,N/2, respectively.

3.2 Entanglement within different regimes

We consider the von Neumann entropy associated with thendrsiate reduced density matrix
pLN Of a block of sizeL out of the totalN spins,S.n = S(oLn) = —tr (oLn 100, oL n) and
analyze its behavior dsis changed, both keeping finite or sending it to infinity. Notice that
since the ground state reduced density matrix is spannelebset of [ + 1) Dicke states, the
entropy of entanglement obeys the constr&ing < log,(L+1) for all L andN, where the upper
bound corresponds to the entropy of the maximally mixecegtaty = I/(L + 1) in the Dicke
basis. This argument implies that entanglement, as mah&yr¢he von Neumann entropy,
cannot grow faster than the typical logarithmic scaling lBlwserved in (1+ 1)-dimensional
guantum spin chains at conformally-invariant critical ngsi[36—38]. Entanglement has thus
been drastically reduced by the symmetry under permutatbthe model, as we hinted at the
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Figure 3.2: Entanglement entropy fdr= 500 andL = 125 as a function dfi andy.

beginning of the Chapﬁr

3.2.1 They - hplane

In order to study the dierent entanglement regimes, we compute the entropy in teepl
spanned by andh. The numerical computation can be done by taking advanttiipe damil-
tonian symmetries to reduce the complexity of the task tolgnamnial growth inN. Results
are displayed in Fig3.2 fad = 500 andL = 125. Fory # 1, one clearly observes a peak at the
critical pointh = 1 whereas the entropy goes to zero at ldrgénce the ground state is then a
fully polarized state in the field direction. In the zero fiéifdit, the entropy saturates when the
size of the system increases and goeS;tq = 1 for y = 0 where the ground state approaches a
GHZ-like “cat” state as in the Ising quantum spin chain [#, 95, 112]. By contrast, foy = 1,

the entropy increases with the size of the system in the me@jio h < 1 and jumps directly to
zero ath = 1 as we shall now discuss.

3.2.2 Analytical study of the isotropic case

In the isotropic casey(= 1), it is possible to analytically compute the entropy ofeergiement
since, at this point, the Hamiltonian is diagonal in the Ritlasis. The ground-state energy is
given byEg(h,y = 1) = -5 + ZM? - 2hM, with
_ [ I(hN/2), if 0<h<1
M‘{ N2, if hx1 (34)

a0ne should take care with this statement, since there aee stbdels which are symmetric under permutations
of particles and such that the entropy of entanglement i leege, as are for instance those systems described by
the Laughlin wavefunction [148].
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and the corresponding eigenvector is simply2, M). Here,l (x) denotes the round value ®f

To calculate the entropy, it is convenient to introduce thenbern of spins “up” so that
M = n—N/2, and to write this state in a bipartite form. Indeed, sin@kB® states are completely
symmetric under any permutation of sites, it is straightémd to see that the ground state can
be written as a sum of byproducts of Dicke states

L
IN/2,n=N/2) = Z p2L/21 - L/2)® (3.5)
1=0

IIN-L)/2n-1-(N-L)/2),
where the partition is made between two blocks of sizd (N — L) and
L N-L
I n-|
N 2
n
defining an hypergeometric probability distribution. Thieression given in EG.3.6 corresponds
to the Schmidt decomposition of the ground state of the mysfEhe entropy of this state for

this bipartition is then simply given b8 n(h,y = 1) = - ZIL=O pilog, pr. Inthe limitN, L > 1,
the hypergeometric distribution of thg can be recast into a Gaussian distribution

P = (3.6)

_(a=02
p|zp|g: \/% e(Zfrz) (3.7)
(o8
of mean valué = nﬁ and variance
o2 =n(N - n)M , (3.8)

N3
where we have retained the sub-leading termNn—L) to explicitly preserve the symmetry
SLN = Sn-Ln- The entropy then reads

e 1
—Im dl p?log, p = > (log, e + log, 27 + log, o?) (3.9)

and only depends on its variance as expected for a Gausstaibatiof. Of course, foh > 1,
the entanglement entropy is exactly zero since the growatd &, in this case, fully polarized
in the magnetic field directiom(= N). Forh € [0, 1) and in the limitN, L > 1, Eq[33, E¢.318
and EJ.3.P lead to

1 L(N-L
Ly = 1)~ 3 logs (<) (3.10)
Moreover, the dependence of the entropy on the magneticifigigen by
1
Sun(hy =1)-Sin(h=0.y = 1)~ Slog, (1~ h?). (3.11)

and thus diverges, at fixddandN, in the limith — 1~.

bThis result has also been obtained in the context of therfeagmetic Heisenberg chain [149].
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Figure 3.3: Entanglement entropy-at= 0 as a function oh for different values oN andL.
Outside of the critical region, the entropy only dependshanratiolL /N.

3.2.3 Numerical study of the anisotropic case

Let us now discuss the more general situatjog 1 for which no simple analytical solution
exists. In this case, the ground state is a superpositioriakielstates with cdéicients that can
be easily determined by exact numerical diagonalizatibimon tracing outl — L) spins, each
Dicke state decomposes as in[Ed.3.5. It is then easy to h&ld t+ 1) x (L + 1) ground state
reduced density matrix and to compute its associated gntrop

We have displayed in FIg.3.3, the behavior of the entropy fametion of h, for different
values of the ratid_/N and fory = 0. Forh # 1, the entropy only depends on the raltifN.
For anyy, at fixedL/N and in the limith — oo, the entropy goes to zero since the ground state
becomes then fully polarized in the field direction. Notibattthe entropy also vanishes, at
h > 1, in the limitL/N — 0 where the entanglement properties become trivial. In ¢hne fzeld
limit, the entropy goes to a constant which depends and equals 1 at = 0 since the ground
state is then a GHZ-like state made up of spins pointingirdirections. Close to criticality,
the entropy displays a logarithmic divergence, which we erically find to obey the law

Sun(h,y) ~ —alog, |1 -h, (3.12)

wherea is close to 16 for N, L > 1 as can be seen in Hig.B.4.

At the critical point, the entropy has a nontrivial behavibat we have studied focusing
on the pointy = 0 which is representative of the clags# 1. There, the entropy also scales
logarithmically withL as in the isotropic case, but with df@rent prefactor. More precisely, we
find

(3.13)

L(N-L
&Nm:Ly¢D~bb%(i——ly

N
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Figure 3.4: Entanglement entropy as a functiomh afear the critical point foyy = 0. The full

line corresponds to the fitting law from Eq.3112 with- 1/6.

For the finite-size systems investigated here, the prafaertes when either the ratio/N or y
is changed, as can be seen in[Eid.3.5. However, in the thgmaadc limitN, L > 1 (and finite
L/N), b = 1/3 fits well our numerical results.

In addition, at fixed. andN, the entropy also depends on the anisotropy parameteitlogar
mically as

Sin(h=217y)-S n(h=21,y=0)~ flog,(1-7v), (3.14)

forall -1 <y < 1 as can be seen in Hig.B.6. Here again, it is likely that, éntttermodynamic
limit, f has a simple (rational) value which, from our data, seemstty6. It is important to
keep in mind that the limiy — 1 and the thermodynamic limit do not commute so thafEql3.14
is only valid fory # 1.

Actually, the logarithmic behavior of the laws given in Eq3, Eq.3IB and Hg.3114 has
been very recently confirmed by yet unpublished analytioatfutations [150], but with values
of a andb that difer from those obtained in simulations. More precisely, & baen proven
that the exact cd&cientsa andb governing the logarithmic behaviors of Eq.3.12 and7&q.
are /4 and 12 respectively, instead of the valuegéland ¥3 obtained from the numerical
computations. The same analytical study confirms the vdlag¢for codficient f in Eq[Z.12.

3.3 Comparison to quantum spin chains
Let us now compare the previous results with those foundarfth1)-dimensional quanturdY

model. As for the Lipkin-Meshkov-Glick model, th€Y quantum spin chain has twofflirent
universality classes depending on the anisotropy paranfgtthe critical point, the entropy has
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XY quantum spin chain Lipkin-Meshkov-Glick model
H=-3Y (@aixo—ixﬂ + @O—iyo—iyﬂ + /lo'iz) H=-g Zij (O'ixo'}( + yo-i}lo—)j/) -hyl, of
St(4,y = 0) ~ 3 logy(L) Si(h,y = 1)~ 3logy(L)

SL(Ly=0)-SL(1=0,y=0)~ £log, (1~ 2?) || SL(h.y =1)- S (h=0,y=1)~ }log, (1 - h?)

SL(1=1y=1)~ Llog,(L) Suh= 1,5 = 0)~ Llogy(L)
SL(Ly = 1) ~ —¢ log,(m) Si(h.y =0)~ —log,[1-hl
SL(1=19)-SL(A=1y=1)~ §logy(y) St(h=19)-Si(h=1y=0)~ glog,(1-7)

Table 3.1: Comparison of results betweenXéquantum spin chain and the Lipkin-Meshkov-
Glick model, wherN > L > 1.

been found to behave as [37, 38, 115]

M) (3.15)

N

wherec is the central charge of the correspondingt+(1)-dimensional conformal field theory
[36] (see Appendix B). For the isotropic case, the criticaldel is indeed described by a free
boson theory withc = 1 whereas the anisotropic case corresponds to a free fertméamy
with ¢ = 1/2. It is striking to see that the entropy in the Lipkin-Mestk®lick model has the
same logarithmic dependence with some prefactor whichp &sei (1+ 1)-dimensional case,
only seems to depend on the universality class — sde Eh.8d&g3.IB —. Concerning the
dependence with the magnetic field and with the anisotropgrpeter, it is also worth noting
that logarithmic behaviors of Hq.3111, EG.3.12, and’Edlare similar to those found in theY
guantum spin chain [37, 38] except that the prefactors irLtpkin-Meshkov-Glick model are
different. A list of analogies between the results of the Liglieshkov-Glick model and the
XY quantum spin chain in the limi > L > 1 is given in Tabl&3]1. Also, and just as a remark,
it is possible to numerically check that the behavior of thisdel with respect to majorization
(see Appendix A) fory # 1 and ash departs from its critical value is completely analogue
to the case of the quantuXlY model [95, 112], which was analytically studied in Chapter 1
Namely, the whole set of eigenvalues of the reduced densityieces of the ground state obey
strict majorization relations as grows, while for decreasing one of the eigenvalues of the
reduced density matrix in consideration drives the systenatds a GHZ-like state in such a
way that majorization is only strictly obeyed in the therryoedamic limit. This behavior implies

a very strong sense of order of the correlations presentigtbund state, in complete analogy
to the behavior of th&'Y quantum spin chain.

c
SLN ~ 3 log, (
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3.4 Conclusions of Chapter 3

In this Chapter we have studied the entanglement propetiagguantum spin model defined
on a simplex. We have seen that:

e Contrary to the intuitive idea that the quantum correlaipresent in the system increase
together with the connectivity of the model, here the synmieeforce the entropy to scale
as if the system were defined on a chain.

e Also, the Lipkin-Meshkov-Glick model presents strikingndiarities with theXY quan-
tum spin chain: not only their phase diagrams are almostiinbut the scaling prop-
erties of the entanglement of the ground state seem to okesathe laws but with appro-
priate proportionality caicients.

The observed similarity in the behavior of this model te-@)-dimensional quantum systems is
indeed very pleasant, since quantum spin chains have besilyhstudied and their properties
are very well-known. Some of their properties seem to betliré¢ranslated into systems which,
a priori, are not defined in (2 1) dimension, like the Lipkin-Meshkov-Glick model. Newvsst
less, most of the situations that one finds when consideriodets which are not defined on a
chain turn out to be much more intrincated, as we will see énrtéxt two Chapters. Perhaps,
a perturbative analysis around the Lipkin-Meshkov-Glickdal — for instance removing a few
number of links in the simplex and thus slightly breaking skienmetry present in the problem —
could allow to analytically study non-trivial propertiesquantum many-body systems of high
dimensionality.



Chapter 4

Entanglement entropy in quantum
algorithms

The previous Chapters were focused on the properties oftgmamany-body systems, basi-
cally from a condensed matter and field theoretical pointi@fvy In particular, we saw that it
is possible to apply tools from quantum information scieacich as majorization and entan-
glement theory — to obtain a better understanding of theguti@s of these systems. We will
now see that these tools can also be used to understand freitdems arising in the area of
guantum information and quantum computation.

In this and the forthcoming Chapters our aim is to study a ighysystem which is very
close to the spirit of quantum many-body physics: we wishridaustand the properties and
behavior ofguantum computers and quantum algorithrimgleed, a quantum computer is noth-
ing but a physical system which is governed by the laws of iuarmechanics and on which
we can perform physical actions — algorithms — such that #wicd is able deliver solutions
to specific problems. Of course, the kind of problems that am solve by using a quantum
computer is necessarily limited by quantum physics itdeding this properly formalized by the
area of quantum complexity theory [151]. Furthermore, pleusible to think of a quantum
computer as a device made of qubits which interact amonggéless in some way. Therefore,
a guantum computer can be understood as an interacting gnantany-body systerithe full
machinery from quantum many-body physics can then in gladde applied to analyze the
performance of quantum algorithms. In particular, thera igery strong connection between
guantum algorithms and quantum phase transitions, as Weeba

From the point of view of quantum computation, the designeaf guantum algorithms is a
great theoretical challenge. The most relevant propertyrdeer to understand these algorithms
is clearly the role entanglement plays in quantum comparnati speedup, while some other
properties seem to play a role as well, as we shall see in €h@ptith majorization [152—154].
Regarding entanglement, several results have been fo@n8(4155—-159] which suggest that
entanglement is at the heart of the power of quantum conguéar important and remarkable
result was obtained by Vidal [49], who proved that large ergkament between the qubits of
a quantum register is mecessargondition for exponential speed-up in quantum computation
To be precise, a quantum register such that the maximum Stmornber of any bipartition is

47
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bounded at most by a polynomial in the size of the system cainbalated iciently by clas-
sical means. The classical simulation scheme propose®]wds, indeed, a time-dependent
version of the density matrix renormalization group altfori, based on thefigcient updates in
time of the quantum register defined in terms of a matrix pcvdtate [45, 46]. Those methods
are, indeed, tools for the classical simulation of the dyisarof a quantum many-body system
which are also useful in the simulation of a quantum comjanasince any quantum algorithm
can be understood as the time evolution of a quantum many-bgstem [71]. Here we just
sketch the basic idea of Vidal's algorithm, and leave all gspecific details of this and other
classical simulation protocols for the next Chapter.

The figure of merif proposed in [49] is the maximum Schmidt number of any biparing
of the quantum state or, in other words, the maximum rank@fédluced density matrices for
any possible splitting. It can be proven that- 25¢), where the von Neumann entrofyp)
refers to the reduced density matrix of any of the two parigi From now on, in this and also in
all the forthcoming Chapters we shall use the following catepscience notation: the number
of qubits in the quantum register will be denotedripyandN = 2" denotes the dimensionality
of the computational Hilbert space, as opposed to the cardiematter notation of the previous
Chapters, wer®l was the number of particles present in the system. Usingtitegion, Vidal
proved that ify = O(poly(n)) at every step of the computation in a quantum algorithranth
it can be diciently classically simulated. Exponential speed-up @lassical computation is
only possible if at some step along the computagiorn exp(?), or S(p) ~ n°, a andb being
positive constants. In order to exponentially acceletageperformance of classical computers
any quantum algorithm must necessarily create an expatfignarge amount ofy at some
point.

As we saw in the previous Chapters, a topic of intense reseamscerns the behavior of
entanglement in systems undergoing a quantum phase imar[4i60]. More generally, when a
splitting of a @ + 1)-dimensional spin system is made, the von Neumann entbiie ground
state for the reduced density matrix of one of the subsys&(is= —tr(olog, p) at the critical
point should typically display a universal leading scallmghavior determined by tharea of
the region partitioning the whole system [31, 105, 131]hveit most logarithmic corrections if
the system is fermionic [109-111]. As hinted in the previ@ispter, this result depends on
the connectivity of the Hamiltonian. Using a naive reasgniwe saw there that the leading
universal scaling behavior for the entropy of an exact bigan of the system should typically
be written in terms of the number of particlegs

S(p) ~n'T 4.1)

for a (d+1)-dimensional critical non-fermionic system withfisciently local interactions, which
reduces to a logarithmic law far= 1. This explicit dependence of entanglement on dimension-
ality turns out to shed new light into some well establishesbits from qguantum computation.

A similar situation is present in quantum adiabatic aldwn$, originally introduced by
Farhi etal. in [16], where the Hamiltonian of the system depends on arebparameters
which in turn has a given time dependence. The Hamiltoniafeted to adiabatic quantum
computation for solving some NP-complete problems (sucB-84AT or Exact Cover) can be
directly mapped to interacting non-local spin systems,taedefore we can extend the study of
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entanglement to include this kind of Hamiltonians. Thisyaif view has the additional interest
of being directly connected to the possibility dfieient classical simulations of the quantum
algorithm, by means of the protocol proposed in [49].

Here we analyze the scaling of the entropy of entanglemeseral quantum algorithms.
More concretely, we focus on Shor’s quantum factoring aflgor [8] and on a quantum algo-
rithm by adiabatic evolution solving the Exact Cover NP-gbete problem [16,61—68], finding
for both of them evidence (either analytical or numericdla@uantum exponential speedup
with linear scaling of quantum correlations — as measurethbyentropy —, which seems to
prohibit the possibility of an féicient classical simulation. We furthermore make an analyti
cal study of the adiabatic implementation of Grover's quansearch algorithm [9, 69, 70], in
which entanglement is a bounded quantity between callsstgdfantum oracle even at the crit-
ical point, regardless of the size of the system. Let us hdlgen, by considering the behavior
of the factoring quantum algorithm.

4.1 Entanglement in Shor’s factoring quantum algorithm

Itis believed that the reason why Shor’s quantum algoritbniectorization [8] beats so clearly
its classical rivals is rooted in the clever use it makes afium entanglement. Several attempts
have been made in order to understand the behavior of théwgnasorrelations present along
the computation [157—-159]. In our case, we will concentiratee study of the scaling behavior
for the entanglement entropy of the system. We shall firseraber both Shor’s original [8]
and phase-estimation [161] proposals of the factoringrélgn and afterwards we shall move
to the analytical study of their quantum correlations.

4.1.1 The factoring quantum algorithm

The interested reader is addressed to [2, 8, 161, 162] foiggréetails. Given an odd integer
N to factorize, we pick up a random numkeee [1, N]. We make the assumption thatand

N are co-primes — otherwise the greatest common divisarafdN would already be a non-
trivial factor of N —. There exists a smaller integee [1, N], called theorder of the modular
exponentiatiora®* mod N, such tha®” modN = 1. Let us assume that ttzewe have chosen is
such that is even andi’/? modN # —1, which happens with very high probability, bigger than
or equal to ¥(2log, N). This is the case of interest because then the greatest aordivisor

of N anda’/? + 1 is a non-trivial factor oN. Therefore, the original factorization problem has
been reduced to the order-finding problem of the modular msmpiiation functiora* mod N,
and it is at this point where quantum mechanics comes at War&.procedure can be casted in
two different (but equivalent) ways:

Shor’s proposal for order-finding

We make use of two quantum registers: a source registerabits such that'2e [N?, 2N?],
and a target register of = [log, N1 qubits. The quantum circuit of the quantum algorithm is
shown in Fid.Zll, where we are making use of the Hadamardigiitaly acting over thek
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qubits of the source, the unitary implementation of the ntendexponentiation function
Uslahix) = [apl(x + a%) modN), (4.2)

where|qg) and|x) respectively belong to the source and target registerstrengluantum Fourier
transform operator
-1

1 : K
QFTI) = 55 > i m) (4.3)
m=0
All these operations can bdheiently implemented by means of one and two-qubit gates. Fi-

nally, a suitable classical treatment of the final measuntmighis quantum algorithm provides
us withr in few steps, and therefore the prime factorizatiomNdh a timeO((log, N)°).

(K)

UE QFT
Ut

n

Figure 4.1. Quantum circuit for the order-finding algoritfior the modular exponentiation
function. The source and target registers haaadn qubits respectively.

Phase-estimation proposal for order-finding

We shall address the specific details of the generic quanha®epestimation algorithm in Chap-
ter 6 and refer the interested reader to [161] for more in&diom. For order-finding purposes,
the quantum circuit is similar to the one shown in the presisection but slightly modified, as
is shown in Fid.ZPR. The unitary operafdf to which the phase-estimation procedure is applied
is defined as

Vi|x) = |(a X) modN) (4.4)
(notice the diference between Hq.4.4 and[Eq.4.2), being diagonalizedgeyesctors

r-1

1 .
Vs) = 7 Z & 271SP/T 1P mod N (4.5)
p=0
such that
Vilvsy = €75/ vg) (4.6)

and satisfying the relati0|gu11/—2 rs;(l) lvsy = |1). The operator is applied over the target register
being controlled on the qubits of the source in such a way that

ANVOIPIX = [HVIX), (4.7)
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where byA(V¢) we understand the full controlled operation acting oventiole system, which
can be éiciently implemented in terms of one and two-qubit gates.mXh e previous case, the
information provided by a final measurement of the quantumpder enables us to get the
factors ofN in a timeO((log, N)3).

K
|0y®K © Uk QFT

(n)

. Vi =3

Figure 4.2: Phase-estimation version of the quantum ¢ifeuthe order-finding algorithm. The
controlled operation i&(V¢). The source and target registers hkandn qubits respectively.

4.1.2 Analytical results

We choose to study the amount of entanglement between theesand the target register in
the two proposed quantum circuits, right after the moduignoaentiation operatiokls from
Fig[Z1 or the controlled/; operation from Fi§.4]2, and before the quantum Fouriersfam

in both cases. At this step of the computation, the pure guastate of the quantum computer
is easily seen to be exactly the same for both quantum arcaritd is given by

k-1
1
) = 55 Z(]) pla® modNy), (4.8)
q:
and therefore the density matrix of the whole system is
1 k-1
W)l =5, (ax)) (ja modNy@¥ modNJ) . (4.9)
9.q'=0

Tracing out the quantum bits corresponding to the sourcegjethe density matrix of the target
register, which reads

-1

1 —~ /
prarger= Wsoured )W) = o D (plaX’p)) (ja modN)(a™ modN]) . (4.10)
P.0.q'=0
that is,
1 ok_1 1 r-1
Prarget = ;} |aP” mod N){a® modN| ~ - ;) |aP modN)(a” mod\]| . (4.11)

The last step comes from the fact tttitmod N = 1, wherer € [1, N] denotes the order of
the modular exponentiation. I#2vere a multiple of there would not be any approximation
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and the last equation would be exact. This is not necesshglgase, but the corrections to this
expression ar®(1/2), thus being exponentially small in the size of the system.

It follows from EQ[4.T1 that the rank of the reduced densigtnx of the target register at
this point of the computation is

rank@targeo ~1T. (4.12)

Because € [1, N], this rank is usuallyO(N). If this were not the case, for examplerifvere
O(log, N), then the order-finding problem could b#ieently solved by a classical naive al-
gorithm and it would not be considered as classically harecaBseN is exponentially big in
the number of qubits, we have found a particular bipartitbthe system (namely, the biparti-
tion between the source register and the target registdraatep in the quantum algorithm in
which the entanglement, as measured by the rank of the rédiargsity matrix of one of the
subsystems, is exponentially big. This implies in turn tBhbr's quantum factoring algorithm
can not be fiiciently classically simulated by any protocol in [49] owitgthe fact that at this
stepy = O(N), therefore constituting an inherent exponential quanspeed-up based on an
exponentially big amount of entanglement. It is worth nagcthat the purpose of the entan-
glement between the two registers consists on leaving timesdn the right periodic state to be
processed by the quantum Fourier transform. Measuringetister right after the entangling
gate disentangles the two registers while leaving the somr@ periodic state, and thistect
can only be accomplished by previously entangling sourcetanget. These conclusions apply
both to Shor’s original proposal (circuit of Hig.#.1) andthe phase-estimation version (circuit
of Figl4.2).

The behavior of the rank of the system involves that the egtiaf entanglement of the
reduced density matrix at this point will essentially sdabearly with the number of qubits,
S(ptarged = 109, ~ log, N ~ n, which is the hardest of all the possible scaling laws. Wé wil
find again this strong behavior for the entropy in the follogvisection, when considering an
adiabatic quantum algorithm solving an optimization NPptete problem.

4.2 Entanglement in an adiabatic NP-complete optimizatioralgo-
rithm

We now turn to analyze how entanglement scales for a quanigonitam based on adiabatic
evolution [16], designed to solve the Exact Cover NP-comegdeoblem [63]. Basic background
on NP-completeness and classical complexity theory carobedfin Appendix C. We first
briefly review the proposal and, then, we consider the stdidiieoproperties of the system, in
particular the behavior of the entanglement entropy fovambipartition of the ground state.

4.2.1 The adiabatic quantum algorithm

The adiabatic model of quantum optimization algorithm sgegith the problem of finding the
ground state of a given system represented by its Hamihorlidany relevant computational
problems, such as 3-SAT [72], can be mapped to this situalitve method is briefly summa-
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rized as follows: we start from a time dependent Hamiltomfithe form

H(s(t)) = (1 - s(t)Ho + s(HHp , (4.13)

where Hy and Hp are the initial and problem Hamiltonian respectively, it} is a time-
dependent function satisfying the boundary conditis(@® = 0 ands(T) = 1 for a givenT.

The desired solution to a certain problem is encoded in thargt state oHp. The gap be-
tween the ground and the first excited state of the instaatenklamiltonian at time will be
calledg(t). Let us definamin as the global minimum di(t) for t in the interval [QT]. If at time

T the ground state is given by the stdig; T), the adiabatic theorem states that if we prepare
the system in its ground statetat 0, which is assumed to be easy to prepare, and let it evolve
under this Hamiltonian, then

KEo; Tho(T)HI > 1 - € (4.14)
provided that
dHio
m ,
Mt | (4.15)
gr2nin

whereH1 g is the Hamiltonian matrix element between the ground antdksited statee <<

1, and the maximization is taken over the whole time intef@al]. Because the problem
Hamiltonian encodes the solution of the problem in its gbstate, we get the desired solution
with high probability after a timél'. A closer look at the adiabatic theorem tells us that
dramatically depends on the scaling of the inversgﬁqlfl with the size of the system. More
concretely, if the gap is only polynomially small in the nuenlof qubits (that is to say, it scales
asO(1/poly(n)), the computational time ©®(poly(n)), whereas if the gap is exponentially small
(O(27M) the algorithm makes use of an exponentially big time tecihehe solution.

The explicit functional dependence of the paramatBron time can be very diverse. The
point of view we adopt in this Chapter is such that this timpedelence is not taken into account,
as we study the properties of the system as a functios wfhich will be understood as the
Hamiltonian parameter. We will in particular analyze théaeglement properties of the ground
state ofH(s), as adiabatic quantum computation assumes that the guastéte remains always
close to the instantaneous ground state of the Hamiltorllaadcaag the computation. Notice
that we are dealing with a system which is suitable to undergoantum phase transition at
some critical value of the Hamiltonian parameter in the riimynamic limit, and therefore
we expect to achieve the largest quantum correlations wherieg close to this point. The
question is how these large quantum correlations scalethétkize of the system when dealing
with interesting problems. This is the starting point foe tiext two sections.

4.2.2 Exact Cover

The Exact Cover NP-complete problem is a particular cadeeoB+SAT problem, and is defined
as follows: given then boolean variable$x}i-1. n, X = 0,1V i, wherei is regarded as the bit
index, we define alauseof Exact Cover involving the three qubitsj andk (say, clauseC”)
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by the equatior; + x; + xx = 1. There are only three assignments of the set of variables
{Xi, Xj, %} that satisfy this equation, namefyt, 0, 0}, {0,1,0} and{0,0,1}. The clause can be
more specifically expressed in terms of a boolean functidbdnjunctive Normal Form (CNF)

as

dc(Xi, X, X)) = (6 VXV X) A (=X VXV X)) A (5X VXV X)
AEX VXV AX) A (X VXV X (4.16)

S0 ¢c(X, Xj, %) = 1 as long as the clause is properly satisfied. idgtanceof Exact Cover is
a collection of clauses which involvesfidirent groups of three bits. The problem is to find a
string of bits{xy, X».. . ., X»} which satisfies all the clauses.

This problem can be mapped into finding the ground state dfiimiltonianHp of a spin-
1/2 system in the following way: given a clau€edefine the Hamiltonian associated to this
clause as

Ho = 5(+ad3+ o5+ oD
+ :—2L(1—0'iz):—2L(l—(TJz)%(1—(7§)
+ :—2L(1—0'iz):—2L(l—(TJz)%(1+(7§)
T R L)
+ %(1+af)%(1—cr7)%(1—cr§), (4.17)

where we have defined?0) = |0), c41) = —|1). Note the analogy between Eq.4.16 and
Eq[4IY. The quantum states of the computational basisateagigenstates dfic with zero
eigenvalue (ground states) are the ones that corresporiae tbit string which satisfie€,
whereas the rest of the computational states are penalidechiwenergy equal to ofleNow,
we construct the problem Hamiltonian as the sum of all the #anians corresponding to all
the clauses in our particular instance, that is to say,

HP - Z HC , (4.18)
C € instance

so the ground state of this Hamiltonian corresponds to tlaatgun state whose bit string sat-
isfiesthe maximum numbef clauses (all of them if the clauses are mutually compealibiVe
have reduced the original problem stated in terms of boolegit to the hard task of find-
ing the ground state of a two and three-body interactive Blaimiltonian with local magnetic
fields. Observe that the couplings depend on the particatdamce we are dealing with, and
that the spin system has not an a priori well defined dimea$itgmeither a well defined lattice
topology, in contrast with some usual simple spin models.

an the next Chapter we shall consider &elient implementation dfic.
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We now define our s-dependent Hamiltontd(s) as a linear interpolation between an initial
HamiltonianHg andHp:

H(s) = (1 - 9)Ho + sHp (4.19)

where we take the initial HamiltoniaHg to be that resulting from the interaction with a mag-
netic field in thex direction:

Ho= > da-a). (4.20)

i=1

wheredi is the number of clauses in which qubé@ppears, and*|+) = |+), with |+) = %(|0)+
|1)), so the ground state &fy is an equal superposition of all the possible computatistaes.
Observe thatH(s) is, apart from a constant factor, a sum of terms involvingalanagnetic
fields in thex andz direction, together with two and three-body interactiomigong terms in
thez component. We can thus expect this system to undergo a anaftase transition (in the
limit of infinite n) assis shifted from 0 to 1. The numerical study of this phenomerthé aim
of the next section.

4.2.3 Numerical results up to 20 qubits

We have randomly generated instances for Exact Cover wiyhoore possible satisfying assign-
ment and have constructed the corresponding problem Hamgaitts. Instances are produced by
adding clauses randomly until there is exactly one satigfgissignment, starting over if we end
up with no satisfying assignments. According to [63], thexebelieved to be the mostfidcult
instances for the adiabatic algorithm. Our analysis pridses follows:

Appearance of a quantum phase transition

We have generated 300 Exact Cover instances — 300 randonitbtaians with a non-degenerated
ground state — and have calculated the ground state for ldhd 24 qubits for dferent values

of the parametes in steps of 1. We then consider a particular bipartition of the systetu i
two blocks ofn/2 qubits, namely, the first/2 qubits versus the rest, and have calculated the en-
tanglement entropy between the two blocks. For each of thaoraly generated Hamiltonians
we observe a peak in the entanglement entropy around atriéittie of the parameteg ~ 0.7.

We have averaged the obtained curves over the 300 instanddsame obtained the plot from
Figl43.

The point at which the entropy of entanglement reaches itdrman value is identified as
the one corresponding to the critical point of a quantum @heensition in the system (in the
limit of infinite size). This interpretation is reinforced Ihe observation of the typical energy
eigenvalues of the system. For a typical instance of 10 gutét observe that the energy gap
between the ground state and the first excited state reaach@sraum precisely for a value of
the parametes. ~ 0.7 (see Fig.414).

We observe from Fif.4l3 that the peak in the entropy is higislymmetric with respect to
the parametes. A study of the way this peak seems to diverge near the dritégaon seems
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Figure 4.3: Evolution of the entanglement entropy betwéentiwo blocks of sizen/2 when a
bipartition of the system is made, on average over 3@@mdint instances with one satisfying
assignment. A peak in the correlations appearsfoer 0.7 in the three cases.
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Figure 4.4: Energies of the ground state and first excitee $ta a typical instance with one
satisfying assignment of Exact Cover in the case of 10 qubitslimensionless units). The
energy gap approaches its minimunsat- 0.7.
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Figure 4.5: Minimum and maximum entropy over all possiblgaliitions of a 10-qubit system
for each of the 300 randomly generated instances of Exa@iCnstances are sorted such that
the minimum entanglement monotonically increases.

to indicate that the growth of entanglement is slower at #grining of the evolution and fits
remarkably well a curve of the typ® ~ log,|log, (s— )|, whereas the falling down of the
peak is better parameterized by a power Bw |s— 5|7 with @ ~ 2.3, @ being a certain
critical exponent. These laws governing the critical radib better and better the data as the
number of qubits is increased.

Analysis of different bipartitions of the system

An explicit numerical analysis for 10 qubits tells us thdtmdssible bipartitions for each one
of the instances produce entropies at the critical pointhefdame order of magnitude — as
expected from the non-locality of the interactions —. Tkisdpresented in F[g.4.5, where we
plot the minimum and maximum entanglement obtained frorthalpossible bipartitions of the
system for each one of the generated instances (pointsréee soch that the minimum entropy
monotonically increases).

Similar conclusions follow from the data plotted in [Eigl4shere we have considered again
the same quantities but looking at 64 randomly-chosen filijpais of the ground state for 10
different instances of 16 qubits. According to these resultsegteict ourselves in what follows
to the analysis of a particular bipartition of the systemmely the firstn/2 qubits versus the
rest.

Scaling laws for the minimum energy gap and the entanglemergntropy

To characterize the finite-size behavior of the quantumehassition, we have generated 300
random instances of Exact Cover with only one satisfyinggassent from 6 to 20 qubits,
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Figure 4.6: Minimum and maximum entropy over 64 bipartiiaf a 16-qubit system for 10
randomly generated instances of Exact Cover. Instancescated such that the minimum
entanglement monotonically increases.
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Figure 4.7: Scaling of the minimum energy gap (in dimengsslunits) with the size of the
system, both in the worst case and in the mean case over alindemly generated instances.
Error bars give 95 per cent of confidence level for the mean.
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Figure 4.8: Minimum energy gap (in dimensionless unitssusithe inverse size of the system,

both in the worst case and in the mean case over all the ragdgenkrated instances. Error

bars give 95 per cent of confidence level for the mean. Thevi@haf the mean is apparently

linear.
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Figure 4.9: Scaling of the entanglement entropy for an dygjsaed bipartition of the system,
both in the worst case and in the mean case over all the ragdgenkrated instances. Error
bars give 95 per cent of confidence level for the mean. The atata@onsistent with a linear
scaling.
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and studied the maximum von Neumann entropy for a bipamtitibthe system as well as the
minimum gap, both in the worst case and in the mean case dvdreatandomly generated
instances. We must point out that the scaling laws foundighgiiaction are limited to the small
systems we can handle with our computers in an exact wayedsirg the number of qubits may
lead to corrections in the numerical results, which shoeldtparticular importance for a more
precise time-complexity analysis of the adiabatic alonit Fig[Z¥Y represents the behavior
of the gap in the worst and mean cases. Fron{Elgy.4.8 we ob#wat/¢he gap seems to obey
a scaling law of the typ®(1/n), n denoting the number of qubits, which would guarantee a
polynomial-time quantum computation. This law is in agreetwith the results in [63], and
are in concordance with the idea that the energy gap typiealhishes as the inverse of the
volume in condensed matter systems (here the volume is timderuof qubits). Error bars in
the two plots give 95 per cent of confidence level in the nuoadlyi calculated mean.

We have also considered the scaling behavior of the entaegleentropy for an equally
sized bipartition of the system, again both in the worst anithé mean case. The obtained data
from our simulations are plotted in HIg.%#.9 — where errorshgive 95 per cent of confidence
level in the mean — and seem to be in agreement with a lineéingaaf entanglement as a
function of the size of the number of qubits. More concretalgumerical linear fit for the mean
entanglement entropy gives us the 18w 0.1n. Observe that the entropy of entanglement does
not saturate at its maximum allowed value (which wouldSagx = n/2 for n qubits), so we
can say that only twenty percent of all the possible poteatiailable entanglement appears in
the quantum algorithm. Linearity in the scaling law wouldisnthat this guantum computation
by adiabatic evolution, after a suitable discretizationthef continuous time dependence, could
not be classically simulated by the protocol of [49]. Giveattthe scaling of the gap seems
to indicate that the quantum computation runs in a polynbtirize in the size of the system,
our conclusion is that apparently we are in front of an exptialy fast quantum computation
that seems extremelyfticult (if not impossible) to befciently simulated by classical means.
This could be an inherent quantum mechanical exponentedyp that can be understood in
terms of the linear scaling of the entropy of entanglementteMiso the parallelism with the
behavior of the entanglement found in Shor’s algorithm i pinevious section. As a remark,
our numerical analysis shows that the quantum algorithrifli€dlt to simulate classically in an
efficient way, which does not necessarily imply that the quantomputer runs exponentially
faster than the classical one, as our time-complexity aiglg limited to 20 qubits.

The linear behavior for the entropy with respect to the sizd® system could in principle
be expected according to the following qualitative reasgnNaively, the entropy was expected
to scale roughly as the area of the boundary of the splittifigis area-law is in some sense
natural: since the entropy value is the same for both demsétrices arising from the two
subsystems, it can only be a function of their shared pregserand these are geometrically
encoded in the area of the common boundary. For a systengobits, we observe again that
this implies a scaling law for the entropy of an exact biianti like S ~ nT (which reduces to
alogarithm ford = 1). Our system does not have a well defined dimensionalitypwing to the
fact that there are many random two and three-body intersgtithe &ective dimensionality
of the system should be very large. Therefore, we expecteatifor almost linear) scaling,
which is what we numerically obtained. While this reasonsgot valid for critical fermionic
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Figure 4.10: Mean entropy of entanglement versus mean sibhe @nergy gap (in dimension-
less units). Error bars give 95 per cent of confidence leveahimeans. Each point corresponds
to a fixed number of qubits.

systems, it dfers only by at most a logarithmic multiplicative correctiahich we did not see
in our computations. The data seems to indicate that suckfectiee dimensionality is around
d ~ n, thus diverging as goes to infinity.

It is possible to compare our seemingly linear scaling ofrtigan entropy of entanglement
with the known results obtained by averaging this quantitgrdahe entire manifold ofi-qubit
pure states, with respect to the natural Fubini-Study nreadAccording to the results conjec-
tured in [163] and later proved in [164], the average entfopyan equally-sized bipartition of a
randomn-qubit pure state in the largelimit can be approximated b8 ~ (n/2)-1/(2 In2) (in
our notation), therefore displaying as well a linear saalaw (but diferent from ours). In fact,
this is an indicator that most of threqubit pure states are highly entangled, and that adiabatic
guantum computation naturally brings the system closedselhighly entangled regions of the
pure state manifold.

The entanglement-gap plane

The plots in Fid.Z.7l0 and FIg.Z111 show the behavior of trekpe the entanglement versus the
gap, both again in the average and the worst case for all thergied instances. Clearly, as the
gap becomes smaller the production of entanglement in jogitim increases. A compression
of the energy levels correlates with high quantum correfetin the system.

Convergence of the critical points

The critical points, seems to be bounded by the valuessaissociated with the minimum
gap and the maximum entropy. Actually, the value of the @itpoint corresponding to the
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Figure 4.11: Maximum entropy of entanglement versus miningize of the energy gap (in
dimensionless units). Each point corresponds to a fixed eufubits.

minimum size of the energy gap is systematically slightlydger than the value of the critical
point corresponding to the peak in the entropy. By increptiie size of the system these two
points converge towards the same value, which would coorespo the true critical point of a
system of infinite size. Thisfiect is neatly observed in Hig.4112, which displays the \abfes
associated with the mean critical points both for the gapfanthe entropy as a function of

Universality

The above results suggest that the system comes close tontuuahase transition. The
characterization we have presented based on the studyrafy@geover instances reconstructs its
universal behavior. Results do not depend on particularaséopic details of the Hamiltonian,
such as the interactions shared by the spins or the strefigitebmagnetic fields. Any adiabatic
algorithm solving ak-sat problem and built in the same way we have done for ExageiCo
should display on average exactly the same properties we foamdregardless of the value
of k, which follows from universality K = 1 is a particular case, as its Hamiltonian is non-
interacting). Linear scaling of entanglement should tfogeebe a universal law for this kind
of quantum algorithms. The specific ¢heients of the scaling law for the entropy should be
a function only of the connectivity of the system, that is be type of clauses defining the
instances.

We have explicitly checked this assertion by numerical &tmns for clauses of Exact
Cover but involving 4 qubitsX¥ + X; + X« + x = 1), which is a particular case of 4-SAT. In
Fig[ZT3 we plot the behavior of the entropy of entanglenf@ra 10-qubit system for these type
of clauses and compare it to the same quantity calculatedopisdy for the clauses involving 3
qubits (the common Exact Cover Hamiltonian). We observéndtp@ appearance of a peak in
the entropy, which means that the system is evolving closegieantum phase transition.
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Fig[4TI2 and Fi§.415 respectively show the scaling of trexgy gap in the mean and worst
case and the scaling of the peak in the entropy in the mean argt wase as well, up to 16
qubits. Error bars give again 95 per cent of confidence lewetife means. The behavior is
similar to the one already found for the instances of Exaste€mvolving 3 qubits (Fi§.418 and
Fig[4.9), which supports the idea of the universality of thsults. The minimum energy gap
seems to scale in this caseag% (n being the number of qubits), which would guarantee again
a polynomial-time quantum adiabatic evolution.

4.3 Entanglement in adiabatic quantum searching algorithns

Grover’s quantum algorithm solves the problem of finding e€tile in a haystack”, which is
mathematically defined as finding a specific element of anntedaatabase by means of calls
to an oracular function. If the database is composed"aél@éments,n being the number of
bits, then the best classical algorithm for solving thishpem takedO(2") time as measured in
calls to the oracle, whereas Grover’s quantum algorithragailyO(2"2) calls to the quantum
implementation of the oracular function [9]. Optimality Gfrover's quantum algorithm has
been proven as well [165].

Let us now consider the adiabatic implementation of Grevguantum searching algorithm
in terms of a Hamiltonian evolution [9, 69, 70] and study itsgerties as a function of the num-
ber of qubits and the parametsr For this problem, it is possible to compute all the results
analytically, so we shall get a closed expression for thérgraf entanglement. As a side re-
mark, it is worth noting that the treatment made in [49] is walid for the oracular model of
quantum computation, as it is assumed that all quantum gegdenown in advanced. Indepen-
dently of this issue, we shall see that the system remain&lyweatangled between calls to the
oracle.

4.3.1 Adiabatic quantum search

Grover’s searching algorithm [9] can be implemented in lagli@ quantum computation by
means of thes-dependent Hamiltonian

H(s) = (1 = 9)(I = )l) + (I = [Xo)(Xol) , (4.21)

wherely) = 2n_1/2 Zilgl [x), nis the number of qubits, arjep) is the marked state. The compu-
tation takes the quantum state from an equal superposifiali computational states directly
to the statgxg), as long as the evolution remains adiabatic. The time theritthgn takes to
succeed depends on how we choose the parameterizat®im aérms of time. Our aim here
is to compute the amount of entanglement present in theteegisd need not deal with the
explicit dependence of the parameteon time and its consequences (see [69, 70] for further
information about this topic).

It is straightforward to check that the Hamiltonian fromBEE&] has its minimum gap be-
tween the ground and first excited states at0.5, which goes to zero exponentially fast as the
number of qubits in the system is increased. Therefore Hhaiwiltonian apparently seems to
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undergo a quantum phase transition in the limit of infinitesits = 0.5. Quantum correlations
approach their maximum for this value sf

4.3.2 Analytical results

It can be seen (see for example [166]) that the ground staigef the Hamiltonian given in
Eq[4.2Z1 corresponds to the expression

E (9= % (1 - \/(1 — 292+ %3(1 - s)J , (4.22)

sdenoting the Hamiltonian parameter. The correspondingnatized ground state eigenvector
is given by

E-(9)=alxo)+b D 1%, (4.23)

X#X0

where we have defined the quantities

a = ab
1
b= —
2N —1+a?
-1
a = (4.24)

2-1-(&)E(9

In all the forthcoming analysis we will assume that the mdr&ete corresponds fry) =
|0y, which will not alter our results. The corresponding densitatrix for the ground state of
the whole system af qubits is then given by

pn = b?(a? — 20 + 1)0)0] + b?)(8] + b?(a — 1)(¢)<0] + 10)s)) , (4.25)

where we have defingd) as the the unnormalized sum of all the computational quastaies
(including the marked one)¢) = Y2'5t|x). Taking the partial trace over half of the qubits,
regardless of what/2 qubits we choose, we find the reduced density matrix

prj2 = bP(@? = 2a + 1)0'XO'| + 2V2b?|¢' '] + bP(a — 1)(¢' }O'| + 10'X¢']) , (4.26)

where we understand th@) is the remaining marked state for the subsystem/@f qubits
and|¢’) = 2§1’8‘1|x> is the remaining unnormalized equally superposition ottal possible

computational states for the subsystem. Defining the cfiesti
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A = a’+2V2 1
a2+2n-1
B = a+2V2 -1
a2+2n -1
2n/2
¢ = a2+ 20 -1 (4.27)

(note thatA + (2"/2 — 1)C = 1), the density operator for the reduced system/@fqubits can be
expressed in matrix notation as

A B - B
B C .. C

pr2=|. . .. (4.28)
B C .. C

in the computational basis, where its dimensions 8fex22"2. We clearly see that the density
matrix has a rank equal to 2. Therefore, because rank(25¢) vp (whereS(p) is the von
Neumann entropy of the density matgxwe conclude tha$(pn/2), which corresponds to our
entanglement measure between the two blocks of qubitswisyal 1. This holds true even
for non symmetric bipartitions of the complete system. Rdigas of the number of qubits,
entanglement in Grover’s adiabatic algorithm is alwap®andedjuantity for anys, in contrast
with the results obtained in the previous sections for Shtattoring algorithm and for the
Exact Cover problem. Grover’s adiabatic quantum algorigssentially makes use of very little
entanglement between calls to the quantum oracle, but éiebaunded quantity of quantum
correlations is enough to give a square-root speedup.

We have explicitly calculated the von Neumann entropygigs. Because the rank of the
reduced density matrix is two, there are only two non-vangleigenvalues that contribute in
the calculation which are

o = %(1 + \J1-4(2V2 - 1)(AC - BZ)) . (4.29)

We analyze the limih — o for s # 0.5 ands = 0.5 separately.

Entropy at s+ 0.5
In the limit of very highn we can approximate the ground state energy given inEq.4.22 b

E_(s) ~ % (1- Vi-451-9) . (4.30)

Therefore, the quantity

(4.31)
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diverges at = 0.5, which implies that this limit can not be correct for thalueof the parame-
ter. The closer we are ®= 0.5, the bigger isr. In this limit we find that

A ~ a? + 22
a2+ 2n
(4.32)
B -~ a + 22
a2+ 2n
(4.33)
2n/2

where all these quantities tend to zeronas> . It is important to note that the convergence
of the limit depends on the value afor, in other words, how close t® = 0.5 we are. The
closer we are t@ = 0.5, the slower is the convergence, and therefore any quatgjgnding on
these parameters (such as the entropy) will converge sltmits asymptotical value. For the
eigenvalues of the reduced density matrix we then find tharnwmh- oo

1
A= 5(1x1), (4.35)

sold, ~ 1landaA_ ~ 0, and therefore the asymptotical entropy is

S(s# 0.5n— o) =-1,log, 44 —A_log, - =0. (4.36)

The convergence of this quantity is slower as we move towsikd§.5.

Entropy at s=0.5

We begin our analysis by evaluating the quantities at 0.5 and then taking the limit of big
size of the system. We have thafs = 0.5) = Zﬁr/’;_ll ~ 2"2. From here it is easy to get the
approximations

1
A ~ =
2
1
B ~ W
1
C ~ s (4.37)

and therefore

1 11 1) 1 1
~ = - /2= -—=\l==
Ae 2{11\/1 42 (42n/2 2n)] >+ o 0 (4.38)
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Figure 4.16: Von Neumann entropy for the reduced system asdcién of s for 10, 12 and
14 qubits. As the size of the system increases the entrojlg tenzero at all points, except at
s= 0.5 in which tends to 1.

S0 — % andS(s = 0.5,n —» ) = 1. According to Eq.Z.38 we can evaluate the finite size
corrections to this behavior and find the scaling of the gmtneith the size of the system for
very largen. The final result for the entropy at the critical point reads

4
S(s=05n>1)~1- E2—”/2 . (4.39)

Note that the entropy remains bounded and tends to & £00.5 as a square root in the expo-
nential of the size of the system, which is the typical fagtoGrover’s quantum algorithm.

We have represented the evolution of the entanglementmrasoa function o§for different
sizes of the system in FIg.4116 and have plotted il Eiglh#&7taximum value of the entropy
along the computation as a function of the size of the systaording to the expression given
in EqZ:39. We can now compare the two plots with[Eld.4.3 agdH in the previous section.
The behavior for the entropy in Grover's adiabatic alganitis dramatically dierent to the
one observed in the NP-complete problem. Entanglementsgéatsated in Grover’s adiabatic
algorithmeven at the point at which the gap vanish&hkich reminds us of short ranged quantum
correlations in non-critical quantum spin chins

Let us note that, in the limit of infinite size, the quantumeta Grover’s algorithm is sep-
arable with respect to any bipartition of the system (andefloee not entangled, as it is a pure
state) for anys except fors = 0.5. All the entanglement along the algorithm is concentrated
at this point, but this entanglement is still a bounded gtiaand actually equal to 1. Conse-
quently, a small amount of entanglement appears essgnialy at one point when the size

bA somehow similar situation is present in {11)-dimensional quantum spin chains outside of the critieal
gion, where the entanglement entropy also reaches a satuvaten increasing the size of the system [22, 37, 38].
Saturation does not appear in higher dimensional systems.
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Figure 4.17: Von Neumann entropy for the reduced system=a0.5 as a function oh. For
infinite size of the system there is a saturation at 1.

of the system is big, whereas the rest of the algorithm nemdsmdle just separable states.
We point out that these results apply as well to the traditialiscrete-time implementation of
Grover’s searching algorithm, as the states betweenitestre the same as in the adiabatic
version for discretes values.

4.4 Conclusions of Chapter 4

In this Chapter we have studied the scaling of the entangiemtropy in several quantum
algorithms. In order to be precise:

¢ We have analytically proven that Shor’s factoring quantdgodthm makes use of an
exponentially large amount of entanglement in the size efsyystem between the target
register and the source register after the modular expiatient operation, which in turn
implies the impossibility of anfécient classical simulation by means of the protocol of
Vidal in [49].

¢ We have provided numerical evidence for a universal linealirsgy of the entropy with
the size of the system together with a polynomially small igagp quantum algorithm by
adiabatic evolution devised to solve the NP-complete EQaver problem, therefore ob-
taining a polynomial-time quantum algorithm which woulgadtve exponential resources
if simulated classically, in analogy to Shor’s algorithmmitersality of this result follows
from the fact that the quantum adiabatic algorithm evolNesecto a quantum phase tran-
sition and the properties at the critical region do not delpem particular details of the
microscopic Hamiltonian (instance) such as interactionsray the spins or local mag-
netic fields.
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¢ We have also proven that the von Neumann entropy remaingdieduny 1 between calls
to the quantum oracle in Grover’s adiabatic algorithm reéiges of the size of the system
and even at the critical point. More concretely, the maximantropy approaches one as
a square root in the size of the system, which is the typical/&@ts scaling factor.

Our results show that studying the scaling of the entropyuseful way of analyzing en-
tanglement production in quantum computers. Results flmrstudy of quantum many-body
systems can be directly applied to bring further insight the analysis of the quantum correla-
tions present in a quantum computerfiBient entanglement scaling laws follow fronffdrent
situations according to the amount of correlations invdjvas can be seen in Talflel4.1. A
quantum algorithm can be understood as the simulation adtaisyevolving close to a quantum
phase transition. The amount of entanglement involvedri#pen the fective dimensionality
of the system, which in turn governs the possibilities oftaiereficient classical simulation
protocols.

= Problem Scaling of the entanglement entropy
[}
S
Q
g Adiabatic Exact Cover’s quantum algorithm S = 0O(n)
€
; Shor’s guantum factoring algorithm S = O(log, r) ~ O(n)
Q
l Critical (d + 1)-dimensional fermionic lattices S= O(nd%d1 log, n)
Critical (d + 1)-dimensional bosonic lattices S= O(n%)
Critical (1 + 1)-dimensional spin chains S = O(log, n)
Non-critical (1+ 1)-dimensional spin chains S=0()
Adiabatic Grover’s quantum algorithm S=0()

Table 4.1: Entanglement scaling laws iffdient problems, in decreasing complexity order.

These scaling laws provide also a new way of understandinge sspects from one-way
guantum computation. It is known that the so-called clustate of the one-way quantum
computer can be generated by using Ising-like interactmms planar (2+ 1)-dimensional
lattice [167—169]. This fact can be related to the at leatdr (in the size of a box) behavior
of the entropy for spin systems in 21) dimensions. (X 1)-dimensional models seem not
to be able to fliciently create the highly-entangled cluster state. Aghis, fact can be traced
to the logarithmic scaling law of the entropy in spin chainsich is insuficient to handle the
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large amount of entanglement to carry out for instance Stadgorithm. Note also thatl ¢+ 1)-
dimensional systems witth> 3 bring unnecessarily large entanglement.

Quantum phase transitions stand as demanding systemsis ééentanglement. They are
very hard to simulate classically. It is then reasonableytaa bring NP-complete problems to
a guantum phase transition setup, which quantum mechaaicids naturally.



Chapter 5

Classical simulation of quantum
algorithms using matrix product states

In Chapter 4 we saw that understanding the detailed behamproperties of quantum many-
body systems plays a role inffirent areas of physics. Those systems whose propertiesecan b
analytically found are typically calleisitegrablesystems andféer a way to study, for instance,
the low-energy sector of flerent models. It is a pity, though, that many of the models$ tha
we know are not integrable, in the sense that it is not evewknehether it is possible or not
to study in an exact way their fundamental properties. Thdéstic alternative is, then, to use
different techniques based on numerical simulations by meaosngputer programs, so that
we can get a detailed understanding of the system.

While it is possible to numerically study the low-energygedies of any model by means of
an exact diagonalization of the quantum Hamiltonian orteeldaechniques, such a possibility is
always limited to a relatively small number of particles do¢he exponential growth in the size
of the Hilbert space. Indeed, this is at the heart of the ratitm to build a quantum computer,
as originally proposed by Feynman [1]. Using standard piteteehnology, a faithful numerical
study of the ground-state properties of a general quantumilkteian can be achieved for
systems up to the order of 20 spins, as we did in the previoapt©h Luckily enough, other
numerical techniques are possible. For instance, quantantédarlo algorithms have provided
good results for some systems while they fail for some ottieesto the presence of the so-called
sign problem [170]. Another example of successful numetazhnique has been the density
matrix renormalization group (DMRG) algorithm, as intreéd by White in [20]. While it was
soon realized that DMRG produced extremely accurate seatién computing the ground-state
energy of quantum systems in one spatial dimension, it wasralized that the method did
not work so well when applied to higher dimensional systet7d[172]. Even in the (% 1)-
dimensional case, there was &éience in the performance of the algorithm between open and
periodic boundary conditions, and between non-critical aritical systems, the former being
the more successful in both cases. Nevertheless, DMRG leaghe algorithm of reference for
computing the low-energy properties of quantum models wiith spatial dimension during the
last decade.

After the appearance of DMRG, a notorious result was founddbflund and Rommer

73
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in [47], where they showed that the original DMRG algorithemde completely understood
in terms of the so-called matrix product states. Originafiroduced in the valence-bond
model of Affleck, Kennedy, Lieb and Tasaki [45, 46], generalized by FenNachtergaele and
Werner [48], and rediscovered in the field of quantum infdramascience by Vidal [49], matrix
product states have been proved to be an extremely usefuhtooder to develop numerical
techniques for computing the low-energy properties tagrettith the dynamics of sficiently
local Hamiltonians in one spatial dimension [50-57], andehiaspired as well several numeri-
cal techniques to study higher-dimensional systems [58-60

The natural question arises of whether matrix product sted@ be applied to simulate the
dynamics of a quantum computer. The content of this Chaptainned to show that this is
indeed possible and that we can handle relatively largelations with controlled accuracy.
We call the parameter controlling the size of the matrijges/hich was already introduced in
Chapter 4, and which can in turn be related to the entangleardropyS of a considered bi-
partition of the system likg > 25¢), As we shall see, the total time cost of the simulation
scales polynomially in parametgr Thus, we expect this approximation scheme to fail when-
ever the inherently neededis O(2"), n being the number of qubits of the quantum register.
Nevertheless, it may be possible in some of these casesyhaeping onlyy = O(poly(n))
in the simulation we already get a reasonable approximdtidine exact computation. This
is indeed the case of the quantum algorithm that we consider. hWe study the numerical
performance of the classical simulation scheme for quartoimputations originally proposed
by Vidal in [49] based on matrix product states, when appitethe simulation of an adiabatic
quantum algorithm solving the Exact Cover NP-complete lgrob The performance of this
quantum algorithm was already addressed in Chapter 4, whersaw that the typical entan-
glement entropy of the system for a given bipartition terdsciale roughly a§ ~ 0.1n, which
makes the parametgrexponentially big in the number of qubits and thus forbidsbssibility
of anexactclassical simulation. Nevertheless, the fact that theéfident in front of the scaling
law of the entropy is small inspires us to think that, perhatpshould still be possible to per-
form a relatively goodgpproximatedclassical simulation of the quantum algorithm by keeping
a small amount of along the evolution. Notice that this is a necessary, whilesufficient
condition to have a good approximation of the evolution ef gmantum algorithm. Let us then
proceed in what follows with an explanation of what matringuct states are and how do they
inspire numerical simulation algorithms for time evolutjonoving then to our explicit results
on the numerical simulation of a quantum computer.

5.1 The matrix product state ansatz

A matrix product state is a parameterization of a pure quartiate o local systems (like, for
instance, qubits) in terms of the amount of bipartite ertemgnt present in the state. Here we
derive this ansatz from twofilerent perspectives: on the one hand, we show how matrix produ
states appear from the point of view inspired bffiéck, Kennedy, Lieb and Tasaki in [45, 46]
based on projectors on some ancillary unphysical partioleshe other hand, we show how it is
possible to obtain a matrix product state by means of a sefisshmidt decompositions of the
guantum state at hand, in the way done by Vidal in [49]. Thesepgerspectives complement
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each other, and give fiigrent insights about the significance of théatient parameters and
guantities that appear in the ansatz.

Derivation by means of projectors

Let us consider a set ofphysical locab-level systems, described by (pure) quantum state given
by

d d
|¢>:ZZ chllz ..... |n||1,|2,--- > (5-1)

I1:1i2:1 In

where the stateg), | = 1,2,...,ndenote a locafl-level basis, and;, ., are the correspond-
ing d" codficients specifying the state. We now consider the followiitupe. First, imagine
that the local systems are placed on a linear chain. Seceings fepresent the physical lochl
level systems by means of two ancillary unphysical padiotach one of them being described
by a Hilbert space of dimensigp, together with a projector from the joint ancillary Hilbert
space of dimensiog? to the physical Hilbert space of dimensidn We also assume that the
state of the ancillary particles (without the projectoss)n a dimerized state of maximally en-
tangled pairs of dimensigp. The projector on the local Hilbert space at $ite represented by
the three-index tensor

AL (5.2)

where the index; = 1,2,...,d corresponds to the physical local Hilbert space, while the
indexesa)_1 = 1,2,...,y andgy = 1,2,..., y correspond to the two ancillary Hilbert spaces.
This is represented in FIg.5.1.

projection on physical local d-level system

maximally entangled palr of ancillae of dimensii

@%%

)iy (2) i (3) i n-1)i n) in
Ala Au

1“2 2 3 a

n-2 "~ n-1 n—ll

Figure 5.1. Graphical representation of a matrix produatesin terms of projections. The

projectors act on a dimerized state of maximally entangletsf dimensiory.

At every site, and for each value of the physical index, weehthen a matrix. Because the
ancillary particles are in a dimerized state of maximalliaegled pairs, the céigcientsci, j,.. i,
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of the system are decomposed as products of matrices, Hemoarne of matrix product state.
The explicit form of the state is

) = Z DTAD AR A i, i) (5.3)

where the sums are to be understood from now on over the ctamrplege of the set of physical
indices{i} and ancillary indices$a}.

Derivation by means of Schmidt decompositions

Consider again the same setrophysical locald-level systems described by the pure state of
Eq[&51, where we assume as before that the local systemeréed from 1 ton in such a way
that they can be thought as placed on a linear chain. FolpWwidal [49], if we perform the
Schmidt decomposition between the local system 1 and thainémy n — 1 we can write the
state as

vy = > AQeHiel ™y, (5.4)

a1

Where/l(l) are the Schmidt cdicients, |¢(1)> and|¢>(2 ”)> are the corresponding left and right
Schmidt vectors, and; = 1,2,...,d. By expressing the left Schmidt vector in terms of the
original local basis for system 1 the state can then be wurate

w = > T AQlinleE ™), (5.5)
i1,a1
r{Y being the appropriate cfigients of the change of basis, thatlig)) = X, T{2iy). At
lag ' 1 1
this point, we expand each Schmidt vedmffl'“”)> in the original local basis for system 2, that

is,

g2y = Z iy . (5.6)

ail2

We now write the unnormalized quantum stmgii"z”)> in terms of the at mogd? eigenvectors
of the joint reduced density matrix for systems43. ., n), that is, in terms of the right Schmidt
vectors|¢>(3 ”) of the particular bipartition between the first two local tgyss and the rest,

together with the corresponding SchmldtﬁMents/l(z)

W) = ZF&%&%A&?W ). (5.7)

allz

Replacing the last two expressions into[Ed.5.5 we obtain

wy= D TErETEkainile ™) . (5.8)

lag
11,a1,12,a2
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By iterating the above procedure we finally get a represiemtaif the quantum state in
terms of some tensofsand some vectors:

wy = > > TIOR8 AL PrON jis o, i) (5.9)
i} ()

Several remarks are to be considered at this point. FirStaithat the above decomposition
immediately provides the Schmidt vectorof all the possible contiguous bipartitions of the
system. Second, the state from[Ed.5.9 is indeed a repaiaatiein of a matrix product state of
the form given in E.RI3 if we define the matrices at bitethe following way:

i i |
A, =T, A0 (5.10)

Third, we see that the maximum allowed rank of thfadent indicesy, | = 1,2,...,n -1,

is site-dependent, since the size of the Hilbert spacesdamesl when performing the consec-
utive Schmidt decompositions depends on the site. In pdaticwe have that, at most; =
1,2,...,d forl =1,2,...,[n/2],andy = 1,2,...,d" D for| = [n/2] + L, |n/2] +2,...,n— 1.
Actually, the fact that the maximum allowed range of the irdtrdices is site-dependent can
also be seen from HQ.%.3 by performing an appropriate sebrofatenated singular value de-
compositions of the matrices defining the state. In practimsvever, many of the Schmidt
codficients for the dierent contiguous bipartitions of the system shall be equébtt almost
equal to) zero depending on the particular state being deresil. Let us then call(l, ) the
local Schmidt rank for the bipartition between thend thel + 1 sides for a given permutation
# of the particles. We shall now defineas the maximum Schmidt rank over all the possible
bipartitions of the system, that is

X = nl']gX)((LP) . (5.11)

We immediately see from this definition that the paramgteontrolling the maximum possible
size of the matrices in a matrix product state@harticles is, indeed, a measure of the maximum
bipartite entanglement that is present in the system. HBpisesentation is very appealing, since
quantum states with low (bipartite) entanglement can themelpresented by small matrices,
while highly-entangled states must necessarily be destrily matrices of large size, corre-
sponding to the idea that the more entangled a system is attierhit is to perform an exact
classical description of it.

The above picture can be made specific by noticingghat®, whereS is the entanglement
entropy (measured in e-dits) corresponding to any posbipkatition of the system. The study
of the scaling of the entanglement entropy can thus be atsinto the study of the possibility
or not of an dicient representation of the quantum state in terms of a xnatoduct state. To
be more precise, matrix product states allow a representafi the state in terms d@®(ndy?)
parameters instead of the origindll codficients. Therefore, those quantum states with
O(poly(n)) can be éiciently classically represented by a matrix product statele those where
x = O(2") cannot. In fact, the computation of the expected valuesadllobservables can be
done inO(y®) time, thus being ficient for systems with small enough This is an important
property, since it means that the matrix product state sgprtation is not only nice, but useful
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as well, in the sense that it allows to compute important jglaysjuantities, like correlators,
in an dficient way. Any possible parameterization of a quantum siditieh does not allow
to eficiently compute physical properties is not a useful parangstion for computational
purposes. How tof@ciently compute correlators with matrix product states barfound for

instance in [57].

The matrix product state parameterization has been vefylusecomputing low-energy
properties of some shiciently local Hamiltonians, and also the dynamics of quanstates. We
shall not explain here the details of some optimization idlgms like DMRG, and the interested
reader is addressed to the huge amount of existing literathout this (see for example [57,
173]). We do sketch, however, the basic ideas on how to pdofmecomputing dynamical
evolutions with matrix product states. In fact, some optetion algorithms, like euclidean
time evolution, can also be understood in terms of the dyoalnprocedures that we explain in
what follows.

5.1.1 Computing dynamics

In this section we explain how to compute the dynamics of aimptoduct state. Our model
for dynamical evolution is based on the application of a $airitary gates acting either on
one or two locald-level systems, which could perfectly correspond to a diszation of the
continuous time evolution driven by a generic one and twdylddamiltonian.

Let us begin this explanation by considering tifteet of a unitary gaté&)!) acting over a
singled-level systeni. The consequence of this operation involves an updatingeoffrtatrices
Al at sitel that goes as follows:

Nt = 3 UD A, . (5.12)
Il
Notice that this type of local gates does nfieat the ancillary indices. Entanglement is thus
undfected, which is a necessary condition since we are justqoeirig a local operation.
The dfect of non-local unitary gates acting orfidrent local systems is less obvious. We
initially consider the case of a non-local gaté-'+1 involving contiguous local systemsand
| + 1. Let us define

LI I I +1 — +
2 Ul A AT = O (5.13)

£ i i
ILh+2
Unlike with local gates, the action of an interacting gatesinot preserve the product form
of the tensordA. To reestablish the matrix product state structure we neeevirite® using a
Schmidt decomposition. The procedure to follow is to corafhie reduced density matrix from
the bipartition of the system between thendl + 1 sides, which for thé+ 1 side reads

( 1) 2k xKj
al+1ﬁ|+1 Z |/la/| 1 G)(YII la/l+l® a-181+1 ° (514)
Kai-1

where we have made use of the at mp&hown Schmidt coﬁcients/lgI }) for the cut between
thel-1 and thd sides. After diagonalizing using {, a1;1) and (j, 81+1) as composed indices, we
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directly read from the eigenvalues the at mdgtupdated Schmidt cmcients/l’gl) for this bi-
partition, together with the updated ma\tri(1f€ef§,+l)"+1 from the codicients of the eigenvectors.

1Q1+1
Finally, the new tensors for systerare easily calculated a&$)" , = 3, .., AL Dingiit
Non-local gates between non-contiguous systems can beaeéda the previous case by using
SWAP gates, producing a typical overheadDgh) operations. Notice that all our manipulations
can be done in a time that grows lik¥y>).

As we have seen, non-local gates entangle the system bysiegethe size of the matrices
that must be kept in the classical simulation scheme. Eawh éin entangling gate is operated
on two neighboring systems, the index of the connectedlaad$ multiplied byd. To keep
the numerical simulation under control, a (non-uniquehdation scheme is needed to stop the
exponential growth of ancillary dimensions. The abilitythis truncation is the key element for
the success of the time-evolution algorithm. Here we erplab possible truncation schemes,
the first one based on the original proposal of Vidal [49] obatimal local truncation, and the
second one inspired on the methods of Verstraete and CiBa&$5 58] based on an optimal
non-local truncation procedure.

Before entering into the details of the possible truncasicimemes, let us introduce a graph-
ical representation of the quantum state that shall be Lsefuhat follows. We represent the
tensorA" " at sitel by the following diagram:

-1
a_q *‘ a,

g
Figure 5.2: Diagrammatic representation of the terﬂ%&fm at sitel.

With this notation, a matrix product state like the one frogl®E3 is represented by means
of the following tensor network:

® o o o0 oo

Figure 5.3: Diagrammatic representation of a matrix progtete in terms of a tensor network.

In the above figure we have decided to dréfte name of the indices of the matrices since
they do not bring any extra information. Each one of the defesents a specific particle.
Vertical lines correspond to the indices of the physicabklit spaces and run up th while
horizontal links between the dots correspond to the amgilladices and run at most up ja
Now, we are in a position to discuss théfdient truncation procedures.
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Local truncation scheme

After the application of a non-local gate on the adjacentesys| andl + 1, the obtained matrix
product state is identical to the original one with the orkgaption that matrices for sitds
andl + 1 have been updated, and the rank of the link connecting thesenatrices has been
multiplied byd. A possible truncation procedure isdoly change the matrices at sitesndl + 1,
computing two new matrices with ancillary indices ugtdn such a way that the fierence with
the original state is minimum (or analogously, the overlainhe original state is maximum).
This is a local scheme, since it onlffects the two very specific matrices of the whole matrix
product state that were touched by the action of the unitatg.dt is easy to see that optimality
in this truncation is achieved by keeping thderms in the range of the common index that
correspond to the largest eigenvallJJ,i=.‘§|)|2 of the reduced density matrices of the bipartition of
the system between the siteandl + 1. The diagrammatic representation of this truncation is

shown in Fid.54.
I |+1

¢ o o — - e

I +1

e o o o O e

Figure 5.4: Local truncation scheme. Black dots corresgorald matrices, white dots corre-
spond to updated matrices after the unitary evolution, hadtick link line has a rank at most
dy. Only matrices at sitekand| + 1 are truncated (indicated by dashed dots), and this is done
by keeping only the most relevaptterms of the corresponding Schmidt decomposition.

Notice that given the locality of the procedure, this scheseems to be a good way to
implement a truncation in order to eventually parallelire tode of the classical simulation
algorithm. More precisely, one could think offidirent nodes of a computer network, each one
of them storing one matrix (or a finite set of them). This tratien scheme would only involve
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communication between the two nodes on which the non-loatd gperates, leaving the rest
n—2 nodes untouched, and therefore involving a small amounfafmation to be sent between
different nodes.

Non-local truncation scheme

Given the above local procedure, we can see that there éhesgsossibility to improve the
precision in the truncation by means of a non-local updatihthe matrices that define the
matrix product state. The main idea is as follows: insteapesforming an optimal truncation
only in matrices at sitelsandl + 1, perform an optimal truncation &ll the matrices defining the
matrix product state, that is, find a new state with new medrior all the sites with ancillary
indices up toy such that the distance to the original state is minimum. ®higpresented in

FiglE5.
I [+1

e o o — . e

% . | . % %
Figure 5.5: Non-local truncation scheme. Black dots cpoad to old matrices, white dots
correspond to updated matrices after the unitary evoluaol the thick link line has a range

dy. We find new matrices at every site (indicated by dashed aatk)ancillary indices up ty
such that the distance to the original state is minimized.

In order to find the new optimal matrices it is possible to pext in the following way.
Let us call|y’) the exact state after the non-local unitary evolution, gndthe new matrix
product state that we use to approximaté. We wish to maximize the quantitL(¢’|¢Z>|2
over all possible matrix product statige with ancillary indices up tg with the normalization
constraint(y|)|? = 1. In order to perform this minimization, we fix all the mag#of|)) to a
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fixed value except the first one, and maximize the overlap mggpect to the first matrix with the
appropriate normalization constraint, which can be dor@(yr?) timefl. Once the values of the
first matrix are found, we repeat the procedure maximizintdpwnespect to the second matrix
and finding a better approximation to the original exactestathe complete maximization is
then performed by repeating this procedure sequentiatlgvery site, and sweeping back and
forth along the system until some desired convergence is\aih

Indeed, this truncation scheme does not require the nai-fate to be necessarily applied
on adjacent systems. Imagine that we wish to apply a non-fpate U('™ between distant
systemd andm. It is possible to see that any such unitary mati%™ e U(d?) can always
be written asU®™ = 3., C.vOY ® O(m) whereo{ and O(m) are 212 local operators acting
respectively on sitesandm (d? operators per site), ancyy ared4 coeficientd. Performlng a
singular value decomposition of the ¢eient Cyp, this can be written a€ap = 3, U, D, Vb
and therefore the original unitary matrix can be expressdda” = 3, 6% & 61, where we
have defined the operato@) = 3, U5, 09DY? andO = 3, Vi Og“) Dﬁ/z. Applying these
operators on the original matrix product state is equiviaiemedefine the tensors at siteand
min such a way that we add a new indexf rank d?:

SDif I I
Ayl oy = ZA&?"W. o} (5.15)

M |I|

7(Min, _ m A
Ap am-1am Z nr:yldm /(Jm;)iﬁnim'

Given the above equation, we see that after the applicafidtimecunitary gate, the sitdsand

m get linked by a common index. This is another way of understanding how non-local gates
entangle the system, namely, by creating new bonds betwessites on which they act. Now,

it is possible to perform again a non-local truncation murcthe same way as before, by finding
new matrices for all the sites with only two ancillary indcep toy and also inO(y®) time as
well. This is represented in Fig.5.6.

We shall expect better accuracies for this non-local trtimeascheme than for the local
truncation procedure, basically because we optimize olagar set of parameters, and because
we do not have to necessarily implement SWAP operationsdardo perform non-local gates
between distant systems, thus reducing the number of ttionedo be applied in the simulation.
Nevertheless, this scheme has the drawback that the nurhbeerations to be done at each
truncation step is bigger than in the local case. Also, tloe tfaat the truncation is non-local
makes it a bad candidate for a possible parallelizationehtimerical code, since all the nodes
of the computer network should communicate among themsealveach truncation step in order
to perform the approximation of the exact state by a new mpataduct state.

aThis is valid for the case of open boundary conditions thaamalyze here. Periodic boundary conditions may
involve a larger computational time than our case.

blt is possible to see this property by expressing the univ@erator as the exponential of a local basis for the
algebra ug?) and performing a Taylor expansion.
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Figure 5.6: Non-local truncation scheme. Black dots cpwed to old matrices, and white
dots correspond to updated tensors after the unitary éenluThe action of a non-local gate
has created a new link of rarié between site$ andm. We find new matrices at every site

(indicated by dashed dots) with ancillary indices ugtsuch that the distance to the original
state is minimized.

5.2 Classical simulation of an adiabatic quantum algorithmsolving
Exact Cover

In this section we show the results of a simulation of a quardigorithm using matrix product
states. More precisely, we have implemented the local atimt scheme explained in the pre-
vious section to the simulation of a quantum adiabatic &lgor solving hard instances of the
Exact Cover NP-complete problem. The performance of tigigrdhm was already analyzed in
detail in the previous Chapter by means of an exact numeraabputation of its properties up
to 20 qubits. There we saw that the entanglement entropyygfiea bipartition of the system
seems to scale & ~ 0.1n, n being the number of qubits. We also found that the lineaiirsgal
of the entanglement entropy forbids the possibility of &tent numerical simulation with the
methods of [49]. The reason becomes clear now, since a lgoading of the entanglement en-
tropy involves an exponentially bjgin the number of qubits, and therefore any algorithm based
on matrix product states must necessarily handle matricespmnential size in order to get a
result sidficiently close to the exact one. In any case, the possibifity mumerical simulation
of this quantum algorithm by using matrix product states ivated in part by the fact that
the codficient of the scaling law for the entanglement entropy seenigetrather small (only
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0.1). Thus, even though we should need an exponentially bigperform a very accurate sim-
ulation of the adiabatic quantum algorithm, it could be uesthat already good simulations
can be performed by keeping a relatively smallFurthermore, the performance of a classical
simulation of a quantum algorithm by using the matrix prddstate ansatz may bring further
insight on the way entanglement is used along the quantutateym As we shall see, the basic
features of the quantum algorithm can still be observed avéime case of a highly-truncated
simulation with very smal}.

Let us sketch the basic features of our simulation. Firstiseremind that classically hard
instances of Exact Cover seem to appear at the so-callechaadyeasy transition aroumd ~
0.8n[174], mbeing the number of clauses amfleing the number of qubits. We have generated
such hard instances, with the additional property of haeinlg a unique satisfying assignment.
The generation of hard instances is in itself a hard probtamwhich we have developed specific
algorithms, essentially based on the iterative additiomanfdlom and non-redundant clauses
until the number of solutions of the instance is one. The tpraralgorithm for a given Exact
Cover instance follows the adiabatic evolution of the gbatate of a Hamiltonian defined by
H(s) = (1 — s)Ho + sHp, where the adiabatic parameterss= t/T andt runs up to a total
predetermined tim&. We take the initial Hamiltonian to by = Y, %(1 - 07) whered
stands for the number of clauses where qutgnters. The non-local problem Hamiltonian
corresponds to the sum of clauses defined as

He= > (@+z+z-17, (5.16)

C < instance

wherez; = (1-07)/2 has eigenvalues 0 and 1, abdtands for a clause involving bitsj andk in

the specific instance. Notice thefdirence between the problem Hamiltonians froni EQ]5.16 and
from Eq[4I8. Both Hamiltonians describe correctly theiSoh to an Exact Cover instance in
its ground state. The essentiaffdrence between them is that while the Hamiltonian ofEQl4.18
has three-body interactions, the Hamiltonian ofEQJ5.16rw. The problem Hamiltonian that
we use in this Chapter is built only from one and two-body wrtagether with local magnetic
fields, and its evolution can therefore be classically satad by the algorithms based on matrix
product states that we have already discussed, based offithent updatings of the register
after performing one and two-body unitary gates. At the ll@fesigenvalues, notice that the
only difference between the two Hamiltonians comes on the eigenvaluthe excited states,
thus keeping the properties of the low-energy sector ut@dicin fact, it is easy to see by means
of direct simulations that an adiabatic quantum algorithasda on this problem Hamiltonian
shows the same important features as the ones alreadykaboriChapter 4, in particular the
appearance of a quantum phase transitiog.at 0.69 in the thermodynamic limit, together
with a linear scaling of the entanglement entropy with theabar of qubits with a small scaling
codficient of the order of (..

Exact simulations of quantum algorithms by adiabatic ev@tusolving hard instances of
satisfiability problems were carried so far up to 30 qubi&b]J1 Here we present the possibility
of performingapproximatedsimulations of this quantum algorithm beyond that number.
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5.2.1 Discretization of the continuous time evolution in uitary gates

Let us now turn to discuss the detailed way matrix produt¢éstean handle the simulation of the
adiabatic evolution of Exact Cover. The simulation need®lilow a time evolution controlled
by the s-dependent Hamiltonian. This continuous unitary time ettoh from time O to timeT
can be discretized as follows:

U(T,0)=U(T, T - A)...U(2A,A)U(A, 0), (5.17)

where the incremems = % defines the discretizatioriy being a positive integer. Our sim-
ulations indicate that we can take the valve= 0.125 while keeping dfticient accuracy — as
compared to smalles — in all of them. Afterl stepss= L =4 = & thatisl = 0,... M.

At any pointl along the evolution the unitary operatd((l + 1)A,lA) needs further subdi-
vision into elementary one and two-qubit gates. This rexputhe use of Trotter's formula to
second order [176-178]:

U((l + 1A, 1A) = &2HE o (é%(1—S>Hoé55HPé%(l—s)H°)% : (5.18)

where the patrtition itdg : Hp : Hg minimizes the number of two-qubit gates as compared to
the alternative partitiotdp : Hg : Hp. We have verified as well that we can maintain a faithful
classical simulation by choosinfj= A. Notice that the split of exponentials in the Trotter's
expansion of EQ.5.18 is chosen so tHatis explicitly separated frorklp, so that this brings the
advantage that both pieces of the Hamiltonian can be decsedpiao mutually commuting one
and two-qubit gates:

n
g9(-9Ho _ 1—[ d5(-9d(1-0) (5.19)
i=1

and

gosHe _ 5S(zi+2)+2z— 1)

HC € instanceei
= Jlce instanceeiés(%?_zmeiés(zjz_zzj)eiés(z‘%_zzk)ei‘ss
ei2¢iszzjei25szzkei26342k ) (5_20)

The complete adiabatic evolution is thus finally discretiz®terms of the sequential action of
the above one and two-qubit gates.

5.2.2 Numerical results of a simulation with matrix product states

The exact simulation of a quantum computer using matrix pcodtates is then completely
defined. As we said before, we have chosen the local trumcatibeme in order to implement
our algorithm. It is possible to see that the total runninggtiof the simulation algorithm scales
asO(Tnmy3). This reasonable truncation carries, though, an inherent always under control

— loss of norm of the quantum state, since the sum of the mxtagquared eigenvalues will not
reach 1. As we shall see, larggs allow for more faithful simulations, as expected.
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We have implemented a number of optimizations upon the abasi& scheme which are
worth mentioning. For any non-local gate there is an ovetted&WAP operations that damage
the precision of the computation. To minimize thifeet, every three-qubit clause is operated as
follows: we bring together the three qubits with SWAPs of lfe and right qubits keeping the
central one fixed and, then, we operate the two-qubit gatefor& returning the qubits to their
original positions we check if any of them is needed in thet gate. If so, we save whatever
SWAP may be compensated between the two gates. Orderingesfigaalso used to produce a
saving of~ 2/3 of the naive SWAPs. Diagonalization of the relevant redwbensity matrices
in the allowed Hilbert space of minimum dimension is used a#.wA further improvement
is to keep a both dynamical and logalso that ancillary indices at theffrent partitions are
allowed to take independent values and grow up to site-akperand time-dependent limits.
This last procedure, though, has shown essentially no biyawement upon a naive fixed
strategy. Let us now explain in what follows thefdrent results of our simulations.

Instantaneous expected energy

We first simulate the adiabatic algorithm with the requiratrtbat the right solution is found
for a typical instance ofl = 30 qubits withm = 24 clauses and = 100. Along the evolution
we compute the expected value of the Hamiltonian of the Bystehich can be calculated in
O(x®) time. Our numerical data are shown in Eigl5.7. The systemanes remarkably close
to the instantaneous ground-state all along the approgiinatolution and, as we can see, the
maximum absolute error with respect to our best classicallsition (¢ = 40) comes when
evolving close to the quantum phase transition point. We aée convergence in the error
while the system approaches the critical point. This mimmabsolute error in the ground-state
energy is, when close to criticality, of the order of 26 10-2, smaller than the typical value of
the energy gap for 30 qubits — as hinted by extrapolating #he ftom Fid.ZJ7 in Chapter 4 —.
A biggery may bring a better precision by using a larger, but event@ibrdable, time cost in
the simulation.

The error in the expected energy is minimizedyascreases. It is noteworthy to observe
how the error in the simulation of the adiabatic algorithmr@ases at the phase transition point.
We have also numerically checked in our simulations thatgrecisely at this point where each
qubit makes a decision towards its final value in the solutiBhysically, the algorithm builds
entanglement up to the critical point where the solutioririgled out and, thereon, the evolution
seems to drop the superposition of wrong states in the eggist

Loss of norm

We plot in Figl5.8 the norm of the quantum state at the endekiimulation as a function gf

in logarithmic scale, for typical instances of,14, 22 and 30 qubits. The remarkable fact is that
some observables, like the energy, appear to be very rogasisa this inaccuracy, while the
behavior of this norm was already expected not to be goodeshis is precisely the parameter
in which we are truncating with respect to the exact evolytand furthermore its accumulation
is multiplicative as time evolves.
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Figure 5.7: Computation of the absolute error, as compardiaety = 40 case, of the expected
value of the Hamiltonian (in dimensionless units) along ddéabatic evolution for a typical
instance with 30 qubits and 24 clausesToe 100 asy increases. Note the increasing precision
with larger y as s approaches the phase transition from the left-hand-sidethd inset, the
instantaneous expected energy is plotted (in dimensienlags). A similar behavior is also
obtained for other instances, gettipgrfectsolution at the end of the computation (zero energy).

Decay of the Schmidt cofficients

Our simulations also allow to compute the decay ofiti8chmidt coﬁicients/ifl'), a=12....x,
at any sitd and at any step of the computation. At the closest point ticality, and for the
central bipartition of the system, these can be approximditted by the law Iog(/lf,”/ 2)) =

a+ % + c+/a, with appropriate instance-dependent fic&ntsa, b andc. The behavior for a

typical instance of 30 qubits is shown in Eigl5.9.

100-qubit instance

The ultimate goal of finding the correct solution appears de very robust in the simulations
we have performed. The exact probability of success can loalated inO(y?) time as well.
As a symbolic example, our program has solved an instanderwit 100 bits, that is, the
adiabatic evolution algorithm has found the correct prodtate out of 2°° ~ 10°C possibilities
for a hard instance witlm = 84 clauses and = 2000. The simulation was done with a
remarkably small value of = 14 <« 2° = ynaxand is presented in FIZ.5]10. Notice that
while the entanglement entropy shows fluctuations becaisdirectly related to the truncation
parameter of the simulation, the probability of succesefa a smooth behavior, being almost
zero at the beginning of the evolution, and jumping diretdlyne precisely when close to the
guantum critical point.
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Figure 5.12: Euclidean time evolution solving a typicaltémsee of 26 qubits witly = 6. The
algorithm finds the correct solution much faster than theutations of adiabatic quantum com-
putation. The sudden jump in the probability of success coagain at the maximal point for
the entanglement entropy.

Time statistics

The robustness of evolving towards the correct solutiomumd for any number of qubits and
smally. To analyze further the performance of this classical sathoh, we have launched a
search for the minimal nin(n) that solves samples ofqubit hard instances in the following
way: for a set of small values gf, we try a random instance with an initidl, for instance
T = 100. If the solution is found, we proceed to a new instanced, iinot, we restart with
a slower adiabatic evolution with, for instance,= 200. This slowing down of the algorithm
is performed until a correct solution is found and the mimmsuccessfull s is stored. Our
results are shown in F[.5E111. The average aveubit instances ol yn(n) appears to grow
very slowly withn, though the extreme cases need increasingly larger timesmp 25. The
slowing-down in the plots for a large number of qubits is asifiiect of the inherent dliculty
to generate hard instances of Exact Cover for larg&V/e want to remind as well that finding
an instance that needs a very laffigin is no counterproof for the validity of the adiabatic
algorithm, as alternative interpolating paths may soleeitistance &iciently [66].

Solving hard classical instances by euclidean time evolwatin

Independently of the fact that our simulation describesnrapproximate way the behavior
of an adiabatic quantum algorithm, we can think of it as a ildla classical algorithm for
solving hard instances of an NP-complete problem. In féctui aim is to solve instances of
Exact Cover, all that is required is a classical algorithrfind the ground-state of the problem
HamiltonianHp from EqI5.I6. A possibility is to perform an evolution in édean time, that
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is, to simulate the evolution driven by the non-unitary eper

e et (5.21)

The above evolution is not physical, since it is not unitangl aherefore does not correctly
preserve the probabilities as the parameféne euclidean time) flows. In any case, it is easy to
see that if we have a (possibly not normalized) quantum statk that it has a non-zero overlap
with the ground state dfip, the action of the operator from [EQ.5121 over the state wdhtually
drive the original state towards the only fixed point of thepnaét — oo, which is the ground
state ofHp. In practice, the action of the above operator over an egtuadighted superposition
of all possible computational states will drive the oridiatate towards the ground statetof
with very high probability at times bigger than the invergete first gap of the system. This
optimization algorithm can be easily implemented by ushrggdame time-evolution procedures
described before in terms of matrix product states. Evamtuin euclidean time shall not be
unitary, though, but this particularity does ndiiegt any of the essential features of the updating
and truncation schemes previously explained.

The performance of the evolution in euclidean time for savhard instances of Exact
Cover is remarkably good, as compared to the performandeeoc§imulation of the adiabatic
quantum algorithm. This new classical algorithm finds therextt solution to the instances
much faster than our previous simulations of adiabatic wiai. As an example, we show
in Figle. 12 the result of a simulation for a typical instarafe26 qubits withy = 6. The
behavior of the euclidean time evolution algorithm resaralviery much the one of the adiabatic
evolution, in the sense that the probability of success msnaery close to zero, until some
specific point in the evolution is reached, where it jumpste eery quickly. Itis also interesting
to notice that this point corresponds, once more, to thetmfimaximum entanglement in the
evolution, as measured by the entanglement entropy. Sheground state oHp is non-
degenerate and separable, and since we begin with an equeapesition of all the possible
states of the computational basis, the entropy must begierat and eventually die in zero,
so it must necessarily reach a maximum at some point alongubleition. Remarkably, the
point of maximum entropy coincides again with the jump in grebability of success. Note
that even though the system is not evolving close to any guoaphase transition (like the one
of the adiabatic quantum algorithm), the behavior alongetiwution is very analogous to the
one observed in those cases (compardFig.5.12 arld Fig.Ag@)n, maximum entanglement
brings the correct solution to the problem, although ouoklgm is entirely classical.

5.3 Conclusions of Chapter 5

In this Chapter we have shown that it is possible to implenagproximated classical simula-
tions of quantum algorithms by the use of matrix productestatith controlled accuracy. More
specifically:

e We have implemented a simulation based on matrix produtdsstd an adiabatic quan-
tum algorithm solving the NP-complete Exact Cover problérhis simulation is made
precise by means of an optimal local truncation scheme, amddes robust results for
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guantities like the expected energy or the probability afcegs, with a relatively small
size of the involved matrices.

¢ We have solved a hard 100-qubit instance of Exact Cover byneneia highly-truncated
simulation of the adiabatic evolution algorithm. This &iaal simulation finds the correct
product state out of¥¥° ~ 10°C possibilities by using matrices whose indices range up to
x = 14, much smaller than the necessar{ r an exact simulation.

e We have seen that the mean time that our approximated @dhssinulations take to
succeed increases slowly with the number of qubits, thowgla definite scaling law can
be inferred given the inherentfiiculty to generate very hard instances of Exact Cover for
a large number of qubits.

e Matrix product states algorithms for dynamical evoluti@m@lso be applied for simulat-
ing the non-unitary evolution in euclidean time, which werdaahown to be a classical
optimization algorithm that solves hard instances of EXam¢er much more féciently
than the classical simulations of the adiabatic algorithm.

The results presented here could be extended in severdtidite For instance, it should be
possible to study the performance of the optimal non-lozaidation scheme and to compare
it with the one we have considered here. Also, the performanfca parallelization of the
numerical code that we have considered here could be adalydere generically, it should
also be plausible to extend the rigid structure of a matrodpct state to other tensor networks
specifically adapted to the particular problem or instanansideration, much in the same way
as PEPS do in (2 1)-dimensional systems [58]. Finally, the study of the perfance of all the
ideas exposed here but with other quantum algorithms isatin to be considered as well. For
instance, it should be possible to see the behavior of aicddssmulation of Shor’s factoring
algorithm by using matrix product states or related tealesg As we saw in Chapter 4, Shor’s
algorithm is yet another quantum algorithm which inherentbkes use of an exponentially big
amount ofy in the number of qubits. Theffect of truncations in that algorithm are, though,
not evident. Perhaps, a classical simulation of Shor’s wmarmlgorithm using the ideas of this
Chapter could be a good candidate for a new classical faaetan algorithm.



Chapter 6

Majorization arrow in quantum
algorithm design

Finding underlying mathematical structures ffi@ent quantum algorithms is one of the prob-
lems that quantum computation deals with. The fact thatetleronly a short list of ideas
behind quantum algorithm design hints howvfidult it is to come up with new quantum tech-
niques and strategies tdheiently solve important problems. Grover's quantum searghal-
gorithm [9] exploits calls to an oracle by enhancing a paféc state, actually implementing a
rotation in the relevant Hilbert space associated to thélpm. Shor’s factoring quantum al-
gorithm [8] exploits the periodicity of an initial quantuntage using a minimum of Hadamard
and controlled-phase gates at the core of the quantum Fawanesform. Based on more general
quantum mechanical principles, the idea of using adialmtidution to carry quantum com-
putation [16] has proven suitable for performing Groveligoathm and has been numerically
studied as a candidate for attacking NP-complete problesisye saw in Chapters 4 and 5.
Also, the so-called quantum walks in continuous time hawwem to dficiently solve a classi-
cally hard problem [179], whereas quantum random walkssaordie-time have proven to bring
also Grover's square-root speed-up in a problem of quanaarck [180]. Many other quantum
algorithms can be mapped to the above families, being theedban the same basic principles.

Some attempts to uncover the properties of quantum algasithave already been explored.
One relevant instance is undoubtedly the role of entangienf@®, 50, 155-159], which was
already considered in detail in the preceding two Chapterdact, although entanglement is
a natural resource to be exploited in quantum algorithmgaieghere are known examples of
faster-than-classical oracle-based quantum algorithirerevthe quantum register remains in a
product state between calls to the quantum oracle all alemga@mputation, though the speed-
up is only by a factor of two [161, 181, 182]. In this Chapter widl concentrate on quite a
different proposal. The basic idea is that there is an underitiogmg majorization behavior in
some quantum algorithms that seems to play a role as well.

More concretely, we study the evolution inffiirent quantum algorithms, with respect to
majorization, of the probability distribution arising ind evolving quantum state from the prob-
abilities of the final outcomes, as introduced in [152]. Wasider several families of quantum
algorithms based on distinct properties. As a first step, madyae the majorization behavior

93
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of the family of quantum phase-estimation algorithms, carmg their performance with re-
spect to majorization to that of Grover’s algorithm [152degiving also the explicit example
of a slightly diferent quantum algorithm solving a hiddefirse function problem by means of
calls to an oracle [161,181,182]. We also consider herelttss of adiabatic algorithms [16] by
studying the behavior of the adiabatic algorithm implerimena quantum search [9,69, 70}
ciency is seen to depend on the interpolating time path takery the evolution [66,69, 70], and
we observe that optimality in adiabatic quantum searchppgars when step-by-step majoriza-
tion is present. Finally, quantum walks provide exponésfi@ed-up over classical oracle-based
random walks [179], and again a manifest strong majorimatehavior is detected. Let us be-
gin, then, by considering the way in which we understand riigjtion theory as applied to the
study of quantum algorithms.

6.1 Applying majorization theory to quantum algorithms

The way we relate majorization theory — as defined in Apperdix to quantum algorithms
is as follows: lety(™) be the pure state representing the register of a quantumutermgt an
operating stage labeled oy = 1... M, whereM is the total number of steps in the algorithm,
and letN be the dimension of the Hilbert space. If we denot¢|ia}$\il the basis in which the
final measurement is to be performed, we can naturally assoaiset of sorted probabilities
pi,i = 1...N, to this quantum state in the following way: decompose tlgéster state in the
measurement basis such that

N
™) =" &My (6.1)

i=1
The probability distribution associated to this state is

P =™ " =P = K™ (6.2)

wherei = 1...N. This corresponds to the probabilities of all the possihitcomes if the
computation were to be stopped at stag@and a measurement were performed. A quantum
algorithm will be said to majorize this probability distution between stepmandm+ 1 if and
only if [152—-154]

gm < g (6.3)

Similarly, a quantum algorithm will be said to reversely or&ge this probability distribution
between stepsnandm + 1 if and only if

pm D) < gm (6.4)

If EqIE3 is step-by-step verified, then there is a net flowrobpbility towards the value of
highest weight, in such a way that the probability distiidtwill be steeper and steeper as time
flows in the algorithm. In physical terms, this can be statec aery particular constructive
interference behavior, namely, a constructive interfeeghat has to step-by-step satisfy a set of
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N — 1 constraints — see Appendix A — at each time step. The quaaligmnithm monotonically
builds up the solution by means of this very precise reongeof the probability distribution.

It is important to note that majorization is checked on aipaldr basis. Step-by-step ma-
jorization is, then, a basis-dependent concept. Nevexdkdhere is a preferred basis, namely,
the basis defined by the final measurement of the quantumtaegi$his typically (though
not necessarily always) corresponds to the computaticasit lof the quantum computer. The
principle we analyze is rooted in the physical and practmagsibility to arbitrarily stop the
computation at any time and perform a measurement. Gehlgspaaking, we analyze the ma-
jorization properties of the probability distribution dfet possible outcomes of our measurement
apparatus along the time-flow in the algorithm.

Natural majorization

Let us now define the concept of natural majorization for quaralgorithms. Working with the
probability amplitudes in the bas{ﬁ)}i’\il as defined in ER.G.1, the action of a generic unitary
gate at steppn makes the amplitudes evolve to step- 1 in the following way:

N
a1(m+l) = Z Uijaﬁm) s (65)
=1

whereU;; are the matrix elements in the chosen basis of the unitarjutmo operator. By
inverting this evolution, we can write

2z

(m) Z (m+1) (66)

j=1

whereC;; are the matrix elements of the inverse unitary evolutionctvis of course unitary as
well. Taking the square-modulus we find

N
M = Z Cij |2|a§m+1)|2 + interference terms (6.7)
=

Should the interference terms disappear, majorizationdvoe verified in a “natural” way be-
tween stepsn andm + 1 since the initial probability distribution could be obitad from the
final one just by the action of a doubly stochastic matrix vethries|Cij|2>. We shall refer to
this property as “natural majorization”: majorization whinaturally emerges from the unitary
evolution due to the lack of interference terms when makirgstguare-modulus of the proba-
bility amplitudes. Similarly, we can define the concept cdtiral reverse majorization”, which
follows in a straightforward way: there will be “natural B¥gée majorization” between steps
andm+ 1 if and only if there is “natural majorization” between step+ 1 andm. As we shall
see, this very specific kind of majorization shall appeaoims of our forthcoming calculations.
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6.2 Majorization in quantum phase-estimation algorithms

Quantum phase-estimation algorithms [2, 8,161, 181-1&3hayood example of a wide class
of quantum algorithms to begin our study. Their key ingratieare the use of the quantum
Fourier transform operator and the promise of a specificttra of the initial state. In [152],
it has been numerically checked that the canonical formefimantum Fourier transform ma-
jorizes step-by-step the probability distribution attad¢ho the computational basis. Here we
analytically address this problem and provide a proof of ttwgvnotion of majorization formu-
lated in [152] explicitly operates in the special case ofrqum phase-estimation algorithms.
To be more specific, our purpose now is to present a detaitsaf pf the following proposition:
majorization works step-by-step in the quantum Fouriersfarm of quantum phase-estimation
algorithms. The whole property is based on the idea that Mad&operators act by majorizing
the probability distribution given the symmetry of the gtian state, and such a symmetry is
partially preserved under the action of both Hadamard antraited-phase gates [152].

6.2.1 The quantum phase-estimation algorithm

Quantum phase-estimation algorithms were originallyouiticed by Kitaev in [183], and the
basic problem that they aim to solve can be stated as foll@ng&n a unitary operatdd and one

of its eigenvector§p), estimate the phase of the corresponding eigenvdlge = e 27?|¢), ¢ €

[0, 1) up ton bits of accuracy. Anfficient solution was found in [161] and can be summarized
in the following steps, as represented by the quantum tiolrig[6.1:

(i) Prepare the pure state®) = |0,0,...,0)¢), where|0,0,...,0) is called the source
register state af qubits and¢) is the target state where we have stored the given eigemwfcto
the unitary operatod.

(il) Apply Hadamard operators
- 1
ul = v (0% + %) (6.8)
over all the qubits in the source staté=1,2,...,n.

(iii) Apply bit-wise controlledU’ gates over the target state as shown in thd’Elg.6.1, where
eachU/ gate corresponds to the applicationj dimes the proposed-gate withj = 0,1...n-1.

(iv) Apply the quantum Fourier transform operator

2n-1
1 g /2"
QFTlq) = oz Z 9% ) (6.9)
=0
over the source register state.

(v) Make a measurement of the source state of the system.pidiges with high proba-
bility the corresponding eigenvalue Ofwith the required precision.
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Figure 6.1: Quantum circuit for the quantum phase-estonagigorithm.
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Figure 6.2: Canonical decomposition of the quantum Fourgasform operator. BY; we
denote the unitary gat8)(0] + €2/2'|1)(1], to be controlledj — 1 qubits below.

6.2.2 Analytical results

Let us now go through the steps of the algorithm focusing om the majorization of the con-

sidered set of probabilities of the computational statedvev The application of the Hadamard
gates in step (ii) to the initial state produces a lowest el@nof majorization by means of
step-by-step reverse majorization,

2n-1

@)y =272 3" 1ig) (6.10)
x=0
yielding the probability distributiorp&ii) = 27" ¥x. The outcome of the controlled’ gates in
step (iii) is theproductstate
i)y = 2772 (j0) + 72727 |1)) - (10) + €721201)) Ig)
=22 32 e X i) . (6.11)

Since the action of these gates adds only local phases irothputational basis, the uniform
distribution for the probabilities is maintaineg{{) = 27" vx).
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Verifying majorization for the global action of the quantufourier transform is simple.
After step (iv) the quantum state becomes

2n-1

Wy = 27 Z e—2ﬂix(¢—Y/2”)|y>|¢> ) (6.12)
x,y=0

We then have the probability distribution
2

pgv) — vy (6.13)

2"-1
2" ) g2
x=0

Global majorization between steps (ii) and (iv) holds [152)e remaining step (v) corresponds
to a measurement whose output is controlled with the prdibadistribution pS").

While global majorization of the probability distributios somehow straightforward to see,
step-by-step majorization is less obvious. To this aim, tfeghematical result that we shall
prove reads as follows: the quantum Fourier transform rizgsrstep-by-step the probability
distribution calculated in the computational basis as lsdétle quantum phase-estimation al-
gorithm. This fact is seen to emerge from two important pripe It is, first, essential that
the initial state entering the quantum Fourier transfors daertain symmetry to be discussed.
Second, the order of the action of Hadamard and controltedg gates maintains as much of
this symmetry as to be used by the rest of the algorithm. Torbeige, Hadamard gates take
the role of majorizing the probability distribution as loag some relative phases are properly
protected. Controlled-phase transformations do presarel a symmetry, as we shall see.

The above property arises in three steps: the first one ¢srmisa majorization lemma,
the second one is a lemma concerning the preservation oéphasd finally the third one is
the analysis of the controlled-phase operators in the quarkourier transform. As hinted
above, we shall observe that the only relevant operatorthéomajorization procedure are the
Hadamard gates acting over théfdient qubits, while controlled-phase operators, though pr
viding entanglement, turn out to be immaterial for majditaa purposes.

A majorization lemma

Let us firstintroduce the concept of “[j¢pair”, central to this discussion. Consider a Hadamard
gateU}(j) acting on qubitj of the quantum register. In general, the quantum registerdvo
correspond to a superposition of states. This superpogiao be organized in pairs, each pair
being characterized by the fact that the Hadamard operati@ubit j will mix the two states in
the pair. Let us illustrate this concept with the example géaeral quantum state of two qubits:

W) = a|00) + B|01) + y|10) + 6|11)
= (a100) +y110)) + (BI01) + 611))
H(0)—pair H(0)—pair
= (a|00) + BI01)) + (y|10) + S|1D)) . (6.14)
H(1)-pair H(1)-pair
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The second line corresponds to organizing the stakt§(@spairs, because each paiffdrs only
on the Oth qubit value. The third line, instead, organizesstite orH(1)-pairs, since each pair
differs only on the first qubit value. We now formulate the follogriemma:

Lemma 6.1: Let [¢) denote a pure quantum state of n qubits, with the property tea
probability amplitudes of the computational H(j)-pairgfdr only by a phase for a given qubit

j- Then, the probability distribution resulting fromFPM/) in the computational basis majorizes
the one resulting fronmy).

Proof: The statdy/) can always be written as:

W) = &1]0,0,...,0,...,0) + a;€91|0,0,...,1),...,0)
+ootamaLd,. .., 00y a1l 1, 1 1. (6.15)

The above expression makes it explicit that the amplitudeg¥ery pair of states that can be
mixed by a Hadamard transformation on the qytonly differ by a phase. The Hadamard gate
Ug) will mix all these pairs. The two states in every pair are équall their qubits except for

the jth one. After the application of thdﬂ) we have

US)W):2—1/2(a1(1+ei51)|0,0,...,01,..-,0>+31(1—ei‘sl)|0’0a---’1j’---’o>

+---+aznfl(1+éﬁzn—1)|1,1,...,oi,...,1>+aznfl(1—éﬁzn—1)|1,1,...,11,...,1>).

(6.16)
We have to find a set of probabilitigsy and permutation matricd® such that
lau la1*(1 + cos 61))
lau? la1?(1 - cos 61))
= Dk PkPx : ; (6.17)
lagn_1/? lagn_1/%(1 + cOS $n_1))
|a.2n_1|2 |a2n_l|2(1 — CO0S 62n_1))
and the unique solution to this probabilistic mixture is
Pr=p2= %
1 01
1 10
1 0 1
1 10

The permutation matri®; is nothing but the identity matrix anB, is a permutation of the
probabilities of each pair which has undergone HadamardhnixT his completes the proof of
the lemman
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The lemma we have just presented states that Hadamardotmauagions do order the prob-
ability distribution when the input state has a specialcitme, namely, those amplitudes to be
mixed only difer by phases. This is the key element pervading in the quaphase-estimation
algorithm: Hadamard transformations and controlled-phesnsformations carefully preserve
such a structure when needed, as we shall now see.

A phase-preservation lemma

Let us now prove the following lemma:

Lemma 6.2: Consider the Hadamard gate,(_PJ acting on qubit j, and the quantum state
)y from EQ[E.TIL with the property that the probability ampdies of the computational H(i)-
pairs djfer only by a phase which only depends o¥ii, Then, the quantum stateﬂh%””) is
such that the H(i)-pairs gfer only by a phas#i # j.

This lemma implies that the quantum Fourier transform warlssich a way that states to be
mixed by Hadamard transformations onlytdr by a phase all along the computation, until the
very moment when the Hadamard operator acts. In other wtirdsstructure of gates respects
the relative weights of the ¢pairs.

Before proving the Lemma 6.2 let us build some intuition bysidering first an example.
We start by introducing a new notation for the phases appgani the source quantum state
of Eq[E.T1 to be operated by the quantum Fourier transforenabpr by definingdy = —2rx¢.
Then

2n-1
iy = 272 %" dixjx) . (6.19)
x=0
Notice that sincex = 373 %2, we can write
-1 ) n-1
Pe= ) —2mx2¢= ) Xai, (6.20)
i=0 i=0

wherea; = —272'¢. As an example of this notation, let us write the staf¥)) in the case of
three qubits:
1 . . .
iy = 57 (1000 + €21100) + €°/010) + €*2*)|110))
1

+ 23/2

(1002 + €°2/101) + €°1j011) + *2+)|111)) €0 . (6.21)

We have factorized theg phase in the second line of the above equation. Alterngtived can
choose to factorize,

1 i i i
wj(lll)) _ 7 (|OO@ + €2]100) + €%°]002) + e'(az+ao)|101>)

2372 (|Ol@ + eiaz|ll@ + ei“0|01]> + ei(02+ao)|111>) dn (6.22)
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or ay,

- 1 . . .
i)y = 7 (1000 + €°1/010) + €0/001) + €(*++*0)|01 1))
1

+ 23/2

(1100 + €110 + €0/101) + €lr+)|111)) &2 . (6.23)
On the whole, the initial state for three qubits can be fémtar in these three fierent ways.
This example shows that there are threffedent possibilities to write the quantum state by
focusing on a particular qubit. The above property is easiyapolated to the general case
of n qubits: we can always write the quantum stigt®)) in n different ways by factorizing a
particular phase in the second line.

Proof: In the general case we can factorize éhephase so that the pure state is written as

" 1 . . .
iy = W(O,O,...,OJ,...,OH---+e'zkﬂ“wl,1,...,01,...,1>)
1 , , . .
+ oz (0.0 0k e TetL L)1) e (6.24)

Then, the action oU,(j) transforms the state as follows:

N 1+ g , . -
UD iy = —(2(:+1)/2) (10.0,....00,...,0) + - + €211, 1,...,00,..., 1))

1 — @ . . .
(Zw—l)/z)(|o,o,...,1l,...,o>+---+é2k==10k|1,1,...,11,...,1>) .

(6.25)

The resulting state still preserves the necessary symmatperty to apply Lemma 6.2 to the
rest of qubits # j. The reason is that thdfect of the operator has been to split the quantum
state in two pieces which individually retain the propetigittall the H{)-pairs difer only by a
phase foii # j. If we now apply another Hadamard operator overfeedént qubit, for instance
qubit j — 1, each of these two quantum states splits in turn in two piece

U}(j—l)p}(j)lw(iii)? _
1+ €)1+ oit)

S22 (10,0,...,07% 0,00+ + €¥1,1,...,071,0],..., 1))
N (1+é;2$)/—2é“”) (l0.0,...., 87 0,...,0)+---+ %1, 1,..., 1710, 1))
+ (1_é;3$>/+zéajl)(|o,0,...,oi—1,1i,...,o>+---+éﬁ*ll,l,---,0"‘1,1‘?~~~’1>)
v (1_é;£>/_zéaj'1) (0.0 . 7LD 0 4+ @IL L. UL DL )

(6.26)

wheregy is the phase defined in EQ.6120 for thit string X = (1, 1,...,0-1,0i,...,1). The
register now consists of a superposition of four quanturtestaach one made of amplitudes
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that only difer by a phase. Further application of a Hadamard gate ovea giierent qubit
would split each of the four states again in two pieces in a thaythe symmetry would again
be preserved within each piece. This splitting takes plamh dime a particular Hadamard
acts. Thus, all Hadamard gates operate in turn producingrieajion while not spoiling the
symmetry property needed for the next step. This complétegitoof of the phase-preserving
Lemma 6.20

Analysis of the controlled-phase operators

It is still necessary to verify that the action of controleldase gates does not interfere with the
majorization action carried by the Hadamard gates. Let usatrate on the action dn‘ﬁ?‘l),
which is the first Hadamard operator applied in the canordeabmposition of the quantum
Fourier transform. Originally we had

W= 51000+ 4 dBerin0.1 1))
1 . |
+ 5z (1.0, 0 e Do 1L 1) (6.27)

where we have taken thg,_1 phase-factor out. After the action Ufg“l) we get

_ 1+eian—1 .
U|(.r|1 Dy = (2(n+—1)/2) (|0, 0,...,0)+ -+ X100, 1, .., 1))
1- ot .
+ —( S I)2 ) (ll, 0,....00+---+ e Zk¢n71(1k|l’ 1,..., l>) =|a) + |b) .

(6.28)

We repeat our previous observation that the state resuiting the action oﬂJg“l) can be
considered as the sum of two states, which we have ciljeghd|b). For each of these two
states the amplitudes of th&(i)-pairsVi # n— 1 still differ only by a phase.

We can now analyze thefect of the controlled-phase operators. Following the stinecof
the quantum Fourier transform operator (see[F1y.6.2) wesfen what happens after applying
a general controlled-phase operator on the {)th qubit of the quantum statg{" ?|y() (the
following procedure is easily extrapolated to the conamiphase operators acting over the rest
of the qubits). If the control qubit is théh one,l # n—1, then the operator will only add phases
over those computational states from[Eq.b.28 such thatthetfn — 1)th and thdth qubits are
equal to 1, so we see that it will only act on e state. Let us writgb) by factorizing thdth
phase as follows:

1 - ¢dont |

by = %ﬁﬁﬁQQLQ“qd““nywn+é&m1%LL“”¢UWD)
1— dan-1 . .
LﬂﬁﬁﬁlgLov.”f,“qo>+~-+éZMwﬂwL1V.qfv.”1»ém.

(6.29)

Itis now clear that the action of the controlled-phase gatg adds a global phase in the second
piece of|by, which can always be absorbed by means of a convenient rizefiof the phase
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a). Hence we see that no relevant change is made in the quardtercencerning majorization,
because the amplitudes of the computatidié)-pairsVi # n — 1 still differ only by a single
phase which only depends @&n The action of controlled-phase operators only amounts to a
redefinition of phases, which does nditezt the necessary property for the Lemma 6.1 to hold.
We see that the needed phase redefinition can be easily meauéraa one of these operators
acts over a particular qubit.

From all the above considerations and lemmas, it immegidtdlows that the quantum
Fourier transform operator majorizes step-by-step thbaiitity distribution in phase-estimation
algorithms, as we wished to show. We wish to emphasize thetat controlled-phase oper-
ators play no role on majorization, though they provide egiement. On the contrary, local
Hadamard operators act exactly in the complementary wayjging majorization without pro-
viding entanglement. We also note that the majorizatioovain the quantum algorithm is
based on two ingredients. On the one hand we have the spemiErpes of the quantum state,
and on the other hand we have the structure of the quantumeFdransform. A quantum
Fourier transform acting on an arbitrary state would faibbey majorization.

One may be tempted to say at this point that Shor’s quanturorfag algorithm [8] obeys a
majorization arrow, since it can be completely understaotims of a certain quantum-phase
estimation algorithm, as we already saw in Chapter 4 (seERig Notice, though, that there
is a subtle but key dlierence between the quantum phase-estimation procedusnexphere
and the one being used in Shor’s algorithm, namely, thettaegéster in Shor’s algorithm is not
in a particular eigenstate of the unitary operator of E{jdud in a given superposition of all of
them. This diference makes step-by-step majorization in Shor's quanautering algorithm
fail. To see how this actually happens, let us remind thathiorS quantum factoring algorithm
the source state to be processed by@#el operator is not the one from EQ.6111, but the state

il
> Z lir +1), (6.30)

i=0
for a particulad = 0,1,...,r — 1 (or a superposition of all of them according to[Ed.4.8), iehe
r is the period of the modular exponentiation functibfx) = a* mod N, with a randomly
chosema € [1, N], N being the number to be factorized. The number of quibité the source
register is chosen such that 2 [N2, 2N?]. The non-trivial instances of Shor’s algorithm come
wheneverr is both even and(N), as we saw in Chapter 4. We notice that wheneves
even, therir + | is either even ifl is even, or odd il is odd,Vi. Therefore, the single bit that
determines the parity of + | will always be either 0 or 1, which implies that the corresgiog
qubit will always be eithefO) or |1) in all the states of the superposition from [EQ.6.30. It is
clear, then, that the action of a Hadamard gate on that spegibit does not majorize the
probability distribution of the final outcomes. Even in these of removing that qubit from the
register, there typically are other qubits in the quantuatestrom Eq.6.30 that have the same
value in all the states of the superposition, as happenadirim the simple case = 4, and
about which we can not have any a priori information. The whmmputation must be then
carried without the possibility of removing these qubitdjose evolution breaks step-by-step
majorization. Nevertheless, majorization seems to be wgrlocally in the neighborhood of
the final peaks of the distribution rather than globally oe trhole set of probabilities. As a
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matter of fact, it is also true that our derivations rely verych on the specific decomposition
of the quantum Fourier transform in terms of individual gat€he underlying quantum circuit
is not unique and majorization may not be present if altéreatecompositions are considered.

6.2.3 Natural majorization and comparison with quantum seaching

We now turn to investigate further the way majorization hasegyed in the quantum phase-
estimation algorithm as compared to majorization in othergum algorithms, such as Grover’s
searching algorithm [9, 152].

For a search in an unstructured database of a particular titentbest known classical algo-
rithm takes asymptoticallp(2") steps in succeeding (wher 2 N is the number of entries).
However, and as we already said in Chapter 4, Grover was @blistover a quantum mechan-
ical algorithm that implements a quadratic speed-up as eoadpto the best classical one, that
is, Grover’s quantum algorithm makes useQ{2"?) steps. We do not enter here into precise
details about the construction of this quantum algorithng @ill only make a few comments
on the way it proceeds. The interested reader is addres$@[ to

The analysis of Grover’s algorithm can be reduced to a tweedisional Hilbert space
spanned by the state we are searchiy and some orthogonal stabe;) [2]. The unitary
evolution of the quantum state is given by the repeated egtjn of a given kerneK which
amounts to a rotation

_[cos@) —sin@)
B (sin(@) cos 0) ) ’

where cosf) = 1 — 2/2". Other choices of kernels are possible but the one from tbgeab
equation is optimal [162, 184]. The initial state of the cartgtion is an equal superposition of
all the computational states, written|as = 272xo)+(1 — 2-")"/?|xt) in this two-dimensional
notation. For a given intermediate computation step thie $tag)" will be transformed to
(o,B)7. If we wish to express the initial amplitudes in terms of timafiones, we have:

a\ [ a’cos@)+p sin(@)
(ﬂ) B (—a’ sin () + B’ cos @)) : (6.32)

(6.31)

We now take the square-modulus of the amplitudes, obtaining

2
[+

i

cog(0) |a’|? + sirf(6) |8')? + 2 cos @) sin (0) Re(a’*B')
Sir?(6) |’ |? + cog(0) |8']? — 2 cos @) sin () Re(a”*B') . (6.33)

If the interference terms were to vanish then majorizatiaule follow in a straightforward
way from the above relations. But it is not the case. Yet it b@sn proven that step-by-step
majorization in Grover's algorithm exists [152], althoutite way it arises is not so directly
related to the unitary evolution in the way suggested here.

Let us turn back to majorization in the quantum phase-esitimalgorithm and its relation
to unitary evolution. We write a generiequbit stately’) to be operated by a Hadamard gate
acting on thejth qubit as
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W) = c0l0,0,...,0,...,0) +¢0,0,...,1,...,0)
ot L1000 Dy gL L L D (6.34)

where we are focusing on the dbeients of the dferentH(j)-pairs. Applying the Hadamard
gate over thgth qubit we get

Uy = 292(cy + ¢;)(0,0,...,01,...,0) + 27Y%(co - ¢))I0,0, ..., 1,...,0)
+- 4+ 2_1/2(Czn_1_j + C2n_1)|1, 1,..., OJ, oD
+2_1/2(C2n_1_j - Czn_1)|1, 1,..., 11, R (635)

For a given pair of original amplitudes,-; andc, we now find final amplitudes’m_j and
Cr, to be related to the initial ones as follows:

Cr i c_.+cC
("H)zzl—l/z("ﬂ_ "‘). (6.36)

Cm C j Crm

Taking the square-modulus of the amplitudes in the aboveeszn we have

2
|Cm—j

l / 1 / J % /
§|ij|2 + §|Cm|2 + Re(Crn_ )

|Cml? %lc;m 2+ %lc;n|2 — Re(Cr_iCh) - (6.37)

As in the Grover's previous example, we observe that if fetence terms disappeared
majorization would arise from this set of relations. In swltase, we would only have to
choose the set of probabilities and permutation matricesngn Eq.6.IB to prove majorization.
For those terms to vanish, very specific properties for thefficientscy-; andcy, must hold. It
can be checked that the interference terms vanish if andibnly

Cm-j = am-
Cm am-j€°™ , (6.38)

wherean._j is real.

The above case is indeed the case of quantum phase-estimfgarithms. Recalling our
previous lemmas, it is possible to see that the interfer¢ggires vanish also step-by-step, and
therefore step-by-step majorization arises as a naturaezpuence of the unitary evolution of
the algorithm. Notice that the quantum state fronEQ]6.leheery specific structure so that
natural majorization is verified step-by-step along thel@ian through the quantum Fourier
transform circuit. In a way we can say that previous stepfiénaigorithm prepare the source
state in this particular and unique form, in order to be pssed by th&€FT operator.
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6.2.4 The quantum hidden d#fine function determination algorithm

We now wish to see how all the above properties work in a speeifample of quantum algo-
rithm, namely, we study majorization in a quantum algorithwiving a particular hiddenfi@ne
function problem [181] as a generalization of Deutsch’'sbfgm [185]. Further studies have
provided a range of fast quantum algorithms for solvinfiedent generalizations [161, 182].
The case that we present here is one of the multiple vargthwat appear in [182], but our main
results are also valid for the whole set of quantum algorithinat solve similar situations. As
we shall see, this algorithm can indeed be understood irstefma slight variation of the general
guantum phase-estimation algorithm previously discussed

Let us consider the following problem [182]: given an intefefunction f : Zy — Zy,
f(X) = mx+ b, wherex, m,b € Zy, find out the value ofn. A classical analysis reveals that no
information abouim can be obtained with only one evaluation of the functionConversely,
given the unitary operatdd; acting in a reversible way such that

UsOly) = 1Xly + (X)), (6.39)

— where the sum is to be interpreted as modllus there is a quantum algorithm solving
this problem with only one single query td;. The requested quantum algorithm proceeds as
follows: let us takeN = 2", n being the number of qubits. Perform then the following steps

(i) Prepare twan-qubit registers (source and target) in the si@t@, . . ., 0)|y1), wherely) =
QFTY1,1,...,1), and QF T~ denotes the inverse quantum Fourier transform in a Hilbert
space of dimensiol\.

(i) Apply the operatoiQFT over the source register.

(iii) Apply the operatorJ; over the whole quantum state (source and target registers).
(iv) Apply the operatoiQF T~1 over the source register.

(v) Measure the source register and output the measured.valu

The diferent steps concerning this process are summarized [n¥ig.6

(n)
j0ye" QFT QFT!

(n) Ut
1)

Figure 6.3: Quantum circuit solving the hiddeffire function problem. Both source and target
registers are assumed to be respectively composadjabits.

We now show how the proposed quantum algorithm leads to tluticso of the problem.
Our analysis raises observations concerning the way bédimgiement and majorization behave
along the evolution.
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In step (i) of the algorithm the quantum state is not entahgce that the quantum Fourier
transform — and its inverse — applied on a well defined stategiromputational basis leads to a
separable state (see, for example, [2]). That is, the quoastatel0, 0, .. ., O)y1) is completely
separable. In step (i) the algorithm evolves through a tprar-ourier transform in the source
register. This action leads to a step-by-step reverse inafmm of the probability distribution of
the possible outcomes while it does not use neither cregtermtanglement. Moreover, natural
reverse majorization is at work due to the absence of irmemfe terms.

Next, it is easy to verify that the quantum state

-1
1 oy /on
1) = oz Z e 2V/Zy) (6.40)
y=0

is an eigenstate of the operatiyh — |y + f(x)) with eigenvaluee®f®¥/2" Thus, after the third
step, the quantum state reads

1 = i n eZﬂib/Z” 21 . n
P Zo e27r|f(x)/2 [X)|r1) = W [ZO g2rimx/2 |X)] W) - (6.41)

The probability distribution of possible outcomes has re#rbmodified, thus nofi@cting ma-
jorization. Furthermore, the pure quantum state of the ffagister can be written a3FT|m)
(up to a phase factor), so this step has not eventually cteagentanglement among the qubits
of the system right after the application of the quantum letac

In step (iv) of the algorithm, the action of the opera@F T~ over the first register leads
to the stateez”‘b/znlm>|w1>. A subsequent measurement in the computational basis o dirgt
register provides the desired solution. Recalling our ipres/ results, we see that the inverse
quantum Fourier transform naturally majorizes step-lep-$he probability distribution attached
to the diferent outputs. Notice also that the separability of the turarstate still holds step-by-
step. This observation completes our analysis of this el@mp

6.3 Majorization in adiabatic quantum searching algorithms

Our aim now is to study the majorization behavior of quantutialaatic algorithms, which
were already considered in the two previous Chapters. Heeechoose to analyze a very
specific instance of the quantum adiabatic algorithm, ngmed consider the quantum adiabatic
algorithm that solves the problem of searching in an ungiraed database. As we shall see, the
effects of a change of path between the initial and the problemilttaian imply also a change
of behavior in the algorithm from the majorization’s persipa. More concretely, those paths
leading to optimality in the quantum algorithm do lead aslwelstep-by-step majorization,
while the converse is not necessarily true. We do not repratthe details of how do adiabatic
quantum algorithms work, since they were already explaine@hapter 4. We do, however,
sketch a couple of its basic properties.

The quantum adiabatic evolution method has been succdgsafyblied to the searching
problem [69, 70, 166]. Let the initial state he = \/_lN Z)':':l |X), N being the number of entries
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of the database, and let the initial and problem Hamiltongapectively béHg = | — [y)(y| and
Hp = | — [Xo){Xol, |Xo) being the marked state. The interpolating Hamiltorti(s(t)) = (1 -
s(t))Ho + s(t)Hp depends on a time-dependent paramggisatisfying the boundary conditions
s5(0) = 0 ands(T) = 1, T being the computational time of the adiabatic algorithmisEtheme
leads to diterent results depending on whether we apply the adiabatidittan globally (that
is, in the whole time interval [Or]) or locally (at each time). In what follows, we consider
these two situations without entering into precise detdithe involved calculations. For further
information, we refer the reader to [69, 70] and referenhesstin.

6.3.1 Numerical results

We have performed a numerical analysis of the way in whictori@gtion appears in the quan-
tum adiabatic searching algorithm. Our study can be dividaltwo parts, regarding whether
we demand the adiabatic condition to be fulfilled either glgbor locally along the evolution.

Analysis of the fastest global adiabatic evolution

Let us suppose that we demand the usual adiabatic conditien n EqZ.Tb of Chapter 4 to
be satisfied globally in the whole interval, [D]. This does not involve any particular restriction
on thet-dependence o(t), so we can choosgt) = t/T, leading to a linear evolution of the
Hamiltonian. Under these circumstances, it can be proven7[@ that the global adiabatic

condition is verified provided that

N
T>—, (6.42)

€

€ being the probability amplitude of not being at the groutates of Hp at time T. Hence,
this quantum algorithm needs a computational tim©g@fl) to hit the right solution with high
probability, so the global adiabatic searching does nad keaan increasing féciency with
respect to a classical searching.

In what follows we callP, (t) the probability of being at the marked state at titnend
similarly P_(t) the probability of being at one of the remainiNg- 1 basis states fierent from
the desired one at time Notice that, given the symmetry of the problep,(t) will exactly
be the same for all those basis statdBedént from the marked one all along the evolution. In
order to analyze majorization, we recall the set of inedjesligiven in EQCAB of Appendix A
to be satisfied at each majorizing time step. Let us make tkereation that the maximum
probability at all times is indee®, (t), while the other probabilities will remain smaller than
this quantity all along the computation and equaPtdt). It is possible to see that the whole set
of N cumulants that arise from the probability distributionldels the same basic behavior as
time flows. Because of that, we present here the behavioredirdt two non-trivial cumulants
P.(t) andP,(t) + P_(t), as the rest of them do not lead tdtdrent conclusions.

We have performed exact numerical simulations of the quardalgorithm in the fastest
allowed case saturating the bound from[EEB.‘ﬂZ:(%) and have found the time evolution for
the two cumulants. The results fo= 0.2 andN = 32 are shown in Fig.8.4. From our numerical
analysis we conclude that a naive adiabatic quantum seargrocess does not produce an
optimal algorithm neither verifies step-by-step majoiaat This property is observed as the
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Figure 6.4: Quantum searching using global adiabatic demwith parameterg = 0.2, N =
32 andT = 160.

two cumulants decrease in time for some time steps, since #éne wiggles which indicate that
the system is evolving too fast to remain close enough torthergl state, and thus not verifying
step-by-step majorization along the flow in time.

Analysis of the local adiabatic evolution

The preceding global adiabatic method can be improved if pyathe adiabatic condition
given in EQLATP of Chapter 4 locally. That is, let us divitle interval [QT] into many small
subintervals and let us apply EQ.4.15 to each one of thesetenlals individually. Taking the
limit of the size of the subintervals going to zero, we find tie adiabatic restriction has to be
fulfilled locally at each time:

|dH1,0|

dt

= _<e OV, (6.43)
g?(t)

whereH1 is the Hamiltonian matrix element between the ground statethe first excited

state andy(t) is the energy gap between these two states, everything gite This is a less

demanding condition than EQ.4115, and means that the aigp@ondition must be satisfied

at each infinitesimal time interval. It can be shown (seegf@mple, [69]) that proceeding in

this way the functiors(t) must have a precise form which is given by the relation

1 N
t=o — (arctan(\/N —1(2s- 1)) + arctan(VN — 1)) . (6.44)

We can observe this dependence in[Eid.6.5, in the cage-0f0.2 andN = 32. The local
adiabatic process implies that the smaller the energy gapebe the ground and first excited
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Figure 6.5: Interpolating paramets(t) for guantum searching using local adiabatic evolution.

states is, the slower the rate at which the Hamiltonian cbsindVith this information it can
be proven [69, 70] that the evolution time for the algorithmsticceed with diiciently high
probability is, in the limitN > 1,

T=_N. (6.45)

2¢

Hence, in the case of local adiabatic evolution the comjmutak process take®( VN) time, just
as in Grover's quantum searching algorithm, obtaining arasgtroot speed-up with respect to
the best classical searching.

Defining P, (t) and P_(t) as before, we can again restrict ourselves to the studyeofitb
non-trivial cumulantd, (t) andP, (t) + P_(t) in order to observe the evolution of majorization.
We have numerically solved the dynamical equationsfer0.2 andN = 32, and have found
the evolution of the two quantities, which is given in EI@6From the numerical analysis, it
follows that a local adiabatic searching algorithm is ndiyaptimal in time, but also verifies
step-by-step majorization.

Analysis of slower global adiabatic evolutions

Let us now consider global adiabatic evolutions which arfenecessarily tight in time, that is,
extremely slow time variations of the Hamiltonian, muchagdo than the minimum necessary
for the adiabatic theorem to hold. In the case we are dealitig this implies the consideration
of the case in whicfl > % that is, the adiabatic inequality from EQ.8.42 is not satten.

We have again performed a numerical analysis for the timkugwa of the two non-trivial
cumulantsP, (t) and P, (t) + P_(t), fore = 0.2, N = 32, andT = 320 and 480 (both cases
bigger than% = 160). The results are plotted in HIgh.7 and [Eig.6.8. Froesé¢htwo plots,
we observe that a step-by-step majorization tends to agmedong as the evolution of the
Hamiltonian becomes slower and slower. From a physicaltpadinview, this means that the
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Figure 6.6: Quantum searching using local adiabatic eimlwith parameters = 0.2, N = 32

andT = 44.
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Figure 6.8: Quantum searching using global adiabatic demwith parameterg = 0.2, N =
32, andT = 480.

probability of “jumping” to the first excited state decresses long as the evolution is performed
at slower changing rates, thus satisfying better the assonspof the adiabatic theorem. Step-
by-step majorization may thus appear in global adiabaticchéng processes for a slow enough
evolution rate.

6.4 Majorization in a quantum walk algorithm with exponenti al
speed-up

The extension of classical random walks to the quantum wwaklbeen widely studied, yield-
ing two different models of quantum random walks, namely, those whiehabtg in discrete
time by means of a “coin operator” [186—-188] and those based Hamiltonian evolution in
continuous time [179, 189, 190]. Regarding the discreteztmodel of quantum random walk,
two indicative algorithmic results have been found, namaty exponentially fast time when
crossing the hypercube with respect to the classical randalx[191] and a quantum search-
ing algorithm achieving Grover's quadratic speed-up [183 a matter of fact, the first one of
these two results does not provide any algorithmic speea@sifhere exists a classical algorithm
that solves the hitting problem in the hypercube exponkpntiaster than the naive classical
random walk, that is, in a tim@®(poly(log, N)) whereN is the number of nodes of the graph
(see [191,192]). Nevertheless, the second of these exarsiptevs algorithmic advantage with
respect to any possible classical strategy. The analysiseajuantum random walk searching
algorithm shows that the quantum evolution can be undeitséscan (approximate) rotation of
the quantum state in a two-dimensional Hilbert space whsaxact in the limit of a very large
database (see [180] for details), resembling the origin@bgsal of Grover's searching algo-
rithm which can be decomposed exactly in a two-dimensiorilbiert space (see Hq.6132). This



6.4. Majorization in a quantum walk algorithm with exponential speed-up 113

IN ouT

Figure 6.9: A possible graph constructed from two binarggreithn = 4.

rotational structure of the evolution implies again stgpstep majorization when approaching
the marked state, exactly in the same way as the usual Gsaeatching algorithm [9, 152].

Here we wish to restrict ourselves to the continuous-time&ehof quantum walk and an-
alyze a proposed quantum algorithm based on a quantum watlominuous time solving a
classically hard problem [179]. We sketch the main ingnedief the problem setting and its
efficient solution in terms of a quantum evolution (the intezdseader is addressed to [179] for
specific details). For a more generic review on quantum waditk in discrete and continuous
time, see [192].

6.4.1 The exponentially fast quantum walk algorithm

The problem we wish to solve is defined by means of a graph iouitie following way (see
[179]): suppose we are given two balanced binary trees ghhaiwith the 2" leaves of the left
tree identified with the 2leaves of the right tree in a simple way, as shown in[E1§.6.9va
of modifying such a graph is to connect the leaves by a randaie ¢hat alternates between
the leaves of the two trees, instead of identifying thematliye An example of such a graph is
shown in Fid.6.700.

Suppose that the edges of such a graph are assigned a cunsidgteing (that is, not two
edges incident in the same vertex have the same color), ahththvertices are each one given
a different name (with ar2bit string, so there are more possible names than the osgmead).
We now define a black-box that takes two inputs, a hameen as a 8-bit string and a coloc,
and acts in the following way: if the input namagcorresponds to a vertex that is incident with
an edge of coloc, then the output corresponds to the name of the vertex jdigetat edge; if
ais not the name of a vertex aris the name of a vertex but there is no incident edge of aplor
the output is the speciahait string (1, 1,...,1), which is not the name of any vertex.

Now, the problem we wish to solve reads as follows: given alblzox for a graph such
as the one previously described, and given the name of theltex; find out the name of the
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ouT

Figure 6.10: An alternative graph constructed from two bjrteees withn = 4. Connection
between the leaves is made through a random cycle.

OUT vertex.

In [179] it was proven that no classical algorithm can tramsg a graph such as the one
in Figle. I in polynomial time, given such a black-box. Rermore, an explicit construction
of a quantum algorithm based on a continuous-time quantutk evathe graph that succeeds
in finding the solution for this oracular problem in polyn@time was given. The quantum
algorithm of [179] for this problem can be briefly summarizexfollows: consider the 2+ 2)-
dimensional subspace spanned by the states

. 1
lcol ) = — Z |y, (6.46)

v Nj 4e column j

whereN; = 21 if0 < j < nandN; = 22"1-1if n+ 1 < j < 2n+ 1. We call this subspace
the “column subspace”, and each state of the basis is anlgqueighted sum of the states
corresponding to the vertices lying on each column of thelyr&Ve now define a Hamiltonian
acting on this subspace by the following non-zero matrixelets:

1, f0<j<n-1,n+1<j<2n

6.47
2Y2  if j=n. (6.47)

(col (j+1)Hjcol j) = (col j|H|col (j+ 1)) = {
The action of this Hamiltonian on the graph is nothing butnpoting transitions between ad-
joint vertices, so a quantum walk on the graph (on the wholbati space) generated by this
Hamiltonian is equivalent to a quantum walk on the line (ad¢blumn subspace). Because of
that, from now on we only focus our attention on the quanturkwa the line generated by the
Hamiltonian from Eq.6.47. Moreover, it can be proven thaegithe structure of the graph in
the form of a black-box such as the one already describedHadriltonian can beféciently
simulated by means of a quantum circuit [179].



6.4. Majorization in a quantum walk algorithm with exponential speed-up 115

0.8 | —

0.6 | —

probability of success

0.2 .

Figure 6.11: Probability of finding the OUT node in the quantwalk algorithm, fom = 4.

The quantum walk works as follows: at first the “wave packeti! ke precisely localized
at the IN vertex (the initial state will bigol 0)). Due to the unitary time evolution driven by the
Hamiltonian, it will initially spread out through theftierent vertices at the left hand side of the
graph (those belonging to the left binary tree), but aftehartstime (once half the graph has
been transversed) it will begin to spread through the vestan the right hand side, interfering
constructively in the OUT vertex as the time goes on. Philgjchis is nothing but a wave
propagation. Should we wait longer, the wave packet wouldecback to be localized at IN
vertex and the process would similarly be repeated agaituailg, due to the “defect” of the
Hamiltonian in the central vertices, it can be shown thattthasmission through the central
columns is not perfect, but high enough for the OUT node to dieested with a very high
probability in small computational time. In [179] the auth@rove that the succeeding time is
polynomial inn.

6.4.2 Numerical results

We have numerically simulated this quantum walk for theipaldr case ofh = 4, and have
plotted the time evolution of the probability of success igl&11. We observe that the numeri-
cal result is in agreement with the prediction that the tiheealgorithm takes in hitting the OUT
node with high probability seems to be, at first sight, lin@ah the size of the system.

In order to analyze majorization, for the case= 4 there are 62 cumulants that can be
computed from a set of 10 non-trivial probabilities. Thisdsdue to the fact that all the states
of the whole Hilbert space belonging to the same column avwshare the same probability
amplitude. The quantities to be considered are then theapilities of being at each column
state normalized by the number of nodes belonging to thathwo| that is, the probability of
being in one node of each column. In general, there are then2different probabilities to be
considered at each time step. Given only these 10 quantiteesvere able to compute all of the
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cumulants

Figure 6.12: Time evolution of the ten cumulants in the quanivalk algorithm when one node
per column is considered, for= 4. The evolution follows a majorization cycle

62 cumulants corresponding to all the partial sums of sgstetiabilities, according to HG.A.3
in Appendix A. In order to make the figures as clear as possiblbave only plotted 10 of these
guantities in Fig.6. 112, which correspond to the cumulanitsrey from the sorted probabilities
when only one node per column is considered. Our numerioalilations indicate that the
rest of the cumulants exhibit a behavior similar to that & times appearing in Hig.6]12 and
thus bring no further insight. We have also numerically dated the algorithm in the case of a
bigger graph, namely, in the case- 10. In this case there ar@22 = 22 different probabilities
to be considered at each time step. Proceeding in the samthamayn the casa = 4 (that is,
not plotting all the cumulants, but the only the sorted surthefe 22 probabilities), we obtain
a similar behavior as in the case foe 4, as is shown in Fig.613.

Looking at the two plots, we conclude that the continuousetiopiantum walk follows a
step-by-step majorization cycle all along the computatiatil it reaches the OUT node. It is
worth remarking as well that the time the algorithm spendsnsely majorizing the probabil-
ity distribution is about half of the time of the whole comatibn. The physical reason for
this behavior is clear, as this is the time the “wave packp€nsls spreading over the binary
tree on the left hand side, thus leading to a destructivefarence part. Note that such a de-
structive interference indeed strictly follows a stepdbgp reverse majorization of probabilities.
Furthermore, by combining FIg.6]11 and Eig.6.12 we seetti@taising of the probability of
success is linked to a step-by-step majorization. Phygidais is the part in which the algo-
rithm constructively interferes into the OUT node once trawvevpacket is approximately in the
right-hand-side binary tree. We see that this construdtiterference follows a majorization
arrow. Actually, the observed majorization cycle is verpigr to the one that we already found
in the quantum phase-estimation algorithm, but in this eesénave numerically checked that
the present cycle does not seem to follow the rules of nategbrization. Complementarily,
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cumulants

Figure 6.13: Time evolution of the 22 cumulants in the quantvalk algorithm when one node
per column is considered, for= 10. The cumulants tend to collapse in the plot given the size
of the graph. The evolution follows a majorization cycle.

we have also observed that the probability amplitudes votloe rule that those belonging to
even columns are real, while those belonging to odd colummareaginary.

The quantum random walk heavily exploits the column stmgctf the problem. The reg-
ister works on a superposition of columns, that is of statderiging to the same column with
equal weight. It is then natural to ask whether a step-by-stajorization cycle operates also
at the level of columns. The idea behind this analysis cpaeds to accept that the final mea-
surement will filter each one of the columns as a whole. Theltre$ the measurement would
correspond to determining a particular column. The poine hig to find to what extent the
success of finding the OUT state is related to the columntstreiof the algorithm. We have
numerically considered the column amplitudesrios 4 andn = 10 with a total of 9 and 21
cumulants to be calculated respectively from the sortetiaiilities at each time step of being
at each columrof the graph. In Fi§.6.14 and H@.6l15 we plot our resultsictvishow that
there does not exist a majorization cycle when the final nreasent is carried on columns.
The conclusion is that deterministic quantum walks clgverploit the column subspace struc-
ture of the problem to achieve step-by-step majorizatiotherindividual states, but not on the
individual columns.

6.5 Conclusions of Chapter 6

We have seen in this Chapter that majorization seems to app## fauna of quantum algo-
rithms in a very specific way, namely, in such a way that sors&aites of gicient quantum

algorithms seem to step-by-step majorize the probabiigiridution of the final outcomes all
along the flow in time. In order to be precise:
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Figure 6.14: Time evolution of the nine cumulants in the quamwalk algorithm when the
column-measurement is considered,rict 4. No majorization cycle is present.
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Figure 6.15: Time evolution of the 21 cumulants in the quantualk algorithm when the
column measurement is considered,rics 10. No majorization cycle is present.
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e We have proven that the quantum Fourier transform in quamthase-estimation algo-
rithms majorizes step-by-step the probability distribatiof the final outcomes. This
step-by-step majorization is seen to appear in a naturalfweay the absence of some
interference terms in the unitary evolution, in contrasthwihat is found for Grover's
guantum searching algorithm. The example of a quantum ighgorsolving a hidden
affine function problem also shows the same basic features ieaguantum-phase es-
timation algorithm, which can be understood in terms of aamzgtion cycle along the
complete time-evolution. However, Shor's quantum facralgorithm, though being
based on a variant of the quantum phase-estimation alggrittoes not globally obey
step-by-step majorization on the whole set of relevant gindities.

¢ We have seen that step-by-step majorization in adiabatintgm searching algorithms
is heavily attached to the optimality of the interpolatirgttp Those paths which do not
produce an optimal qguantum search are seen to step-by-stgpiza the probability of
the final outcomes only if the change rate of the Hamiltongextremely slow. On the
contrary, the optimal path producing a square-root spgedinectly obeys step-by-step
majorization.

¢ WWe have observed that there is a majorization cycle of thbghitities of the final out-
comes in an exponentially fast quantum walk algorithm smj\a classically hard problem
defined in terms of a non-trivial graph. This majorizatiortleydoes not appear if alter-
native collective measurements are considered.

Our conclusion is that some broad families of quantum atlgors seem to have an under-
lying majorization structure in the way they proceed in ordeget the desired solution to the
problem that they deal with. This behavior is somehow sinidahe one of greedy algorithms in
classical computation, which always evolve such that tlebaiility of the “winner” increases
at each time step. Majorization is, though, a far more ses@néition, since it not only involves
constraints on one single and specific probability, but endbmplete probability distribution.
In some sense, majorization seems to be a plausible caedalktok at in order to have a good
understanding of the performance of a quantum algorithgetteer with entanglement. How
these two quantities behave along the computational ewalatf a given quantum algorithm
may already provide a lot of information about its perforran






Chapter 7

General conclusions and outlook

The work presented in this thesis tries to bring togeth§ernt fields of physics. We used tools
from quantum information science to analyze problems imtuma field theory and condensed-
matter physics in Chapters 1 and 3. Conformal field theoryicaarn be useful to analyze
problems in qguantum information science, as we saw in Chafitand 2. Moreover, quantum
phase transitions and quantum algorithms are seen to benwerly related, as we have seen in
Chapters 4 and 5. Furthermore, ideas related to the penfamenaf some quantum algorithms
were shown in Chapter 6 by using majorization theory. Alllinwwe have seen that the fields
of quantum information science, condensed-matter phyaigsquantum field theory have very
much in common, and that their multidisciplinary intersaetis useful.

Let us consider several future directions. First, the useajbrization theory and conformal
field theory together with related techniques applied torarehension of both the irreversibil-
ity of renormalization group flows and the behavior of theglrcopy entanglement in more
than (1+ 1) dimensions is something that remains to be done. Alsg, dtill a theoretical
challenge to know whether adiabatic quantum algorithmsscéwe NP-complete problems in
polynomial time or not, which in the end amounts to ask aboaipossibilities of quantum com-
putation to solve the celebrate@RP conjecture. Further analysis of adiabatic quantum algo-
rithms could be done, for instance, by means of a paralt@izaf the local truncation scheme
that we used in Chapter 5, or by means of non-local truncatitiemes, adapted valence-bond
ansatzs for the ground state wavefunction, or other relatgthiques. Indeed, classical numer-
ical simulations using the ideas from Chapter 5 of some ajiantum algorithms, like Shor’s
factoring quantum algorithm, could bring further insighutto for the quantum algorithm and
for the classical simulation technique itself. The big peobin quantum computation remains
to be, yet, the design of new, useful anfiaent quantum algorithms. Furthermore, from the
many-body physics point of view, the challenge now is to genfreliable and accurate classi-
cal simulations of the properties of {2L)-dimensional quantum many-body systems, for which
new numerical techniques are beginning to be discoveredieMer, the tools developed so far
do not apply to the study of critical fermionic systems in smtiran one spatial dimension, since
some of these systems break the entropic area-law scald®z-111]. A better understanding
of these models, both from a theoretical and humerical gadimtew, together with a plausible
numerical ansatz for their ground state wave function, resnas an open problem.
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Appendix A

Majorization

Majorization theory deals with the notion of relative oraérmprobability distributions. It was
originally introduced within the fields of mathematicaltigcs and economics [11-14], and its
basic idea relies on the comparison of two given probabdisgributions by means of a set of
order relations to be satisfied by their components.

We now precisely define the notion of majorization [14]. Key € R*N be two normalized
probability vectorsy N, x = XN, yi = 1. We say that distributio§f majorizes distributiorx,
written X < ¥, if and only if there exist a set of permutation matri€égsand probabilitieg, > O,
>k Pk = 1, such that

X= > PPy (A1)
k

Since, from the previous definitioX,can be obtained by means of a probabilistic combination
of permutations ofj, we get the intuitive notion that probability distributiofis more disor-
dered than probability distributiof. This defines a partial order in the space of probability
distributions.

There are two alternative equivalent definitions of magtian which turn out to be useful.
The first one reads as follows. We say that a gider N matrix D is doubly stochastic if it has
non-negative entries and each row and column adds up to h, ¥ineajorizesX if and only if
there is a doubly stochastic matiixsuch that

%=Dy. (A.2)

Notice that in EQAILY, pxkPx = D defines a doubly stochastic matrix, that i3,has
nonnegative entries and each row and column adds up to thitysatisfying EGLAI2.

The third equivalent definition of majorization can be dateterms of a set of inequalities
between partial sums of the two distributions. Considercttraponents of the two probability
vectors sorted in decreasing order. Ther;, y if and only if

k k
D%y k=12...,N-1. (A.3)
i=1 i=1

All along this thesis, we refer to these partial sums of sbpibabilities agumulants
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A powerful relation between majorization and any convexcfiom f over the set of proba-
bility vectors states that
X<y=>fX)<f(y). (A.4)

From this relation it follows that the Shannon entrdi{?) = — Ei'\:'lz log, z of a probability

distributionZ € RN satisfiesH (X) > H (¥) wheneverk < y. Majorization is, therefore, a stronger
notion of order for probability distributions that the omegosed by the entropili(2).

The connection between majorization and quantum mecheaaitbe established whenever
a probability distribution appears. For instance, onedbelinterested in the majorization prop-
erties of the probability distribution arising from the spem of some given reduced density
matrix, as happens often in the field of quantum informaticierece. For two reduced density
operatorg ando with spectrumgi and&, we say thap < o if and only if g < &. This extends
the notion of majorization to positive semi-definite operatby considering their normalized
spectrum.



Appendix B

Some notions about conformal field
theory

The aim of this Appendix is to give a brief, non-technical ammh-exhaustive idea about some
of the basic concepts of conformal field theory. The intexdseader is referred to the specific
literature in the field for further details and developmdiste for example [21] and references
therein).

Consider a metrig,,(X) of signature , q) in a space of total dimensidd, wherex stands
for a given point of this space in some given coordinate systénder a change of coordinates
X — X, the metric transforms &g, (X) = gx—*,; g)’(‘ﬂ 0.5(X), where sums are to be understood
on repeated indices from now on. The conformal group idimensions is, by definition, the
subgroup of coordinate transformations that leave theienietrariant up to a local change of

scale,

g;zv(x) - g;u,(X’) = Q(X)g/tv(x) s (B'l)

whereQ(x) is a local dilatation factor. It is possible to exactly chaerize the form of these
transformations, which are given by the Poincaré group

X —- X =Xx+a

Xx —» X =Ax (A eSO(pQ) (B.2)
with Q(X) = 1, the dilatations
X— X = AX (B.3)
with Q = 12, and the so-called special conformal transformations
X X = X+bX (B.4)

C1+2b-x+b2x2

with Q(x) = (1 + 2b - x + b?x?)2. Conformal symmetry can then be understood as some gen-
eralization of scale symmetry. Those field theories definetthé continuum that are invariant
under conformal transformations constitute the so-caltatformal field theories

Conformal symmetry is especially powerful in the case oft@atisions, typically denoted
as (1+ 1), in the case of having one temporal and one spatial dimen8&8iven the coordinates
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of the planex! andx?, and defining new complex coordinates= x! + ix? andz = x! — ix?
(respectively called holomorphic and antiholomorphicrditates), conformal transformations
in 2 dimensions coincide with the set of analytic coordined@sformations in the plane

z - f(2
z - 1@, (B.5)

f and f being analytic complex functions. Typically, it is usefolwork with z and z treated
as independent variables, so that the physical conditien Z* is left to be imposed at our
convenience. The fact that conformal transformations éngiane precisely coincide with the
group of analytic coordinate transformations is very niolas, since the number of generators
of the conformal group in 2 dimensions is thifinite, which only happens for this number
of dimensions. The behavior of conformally-invariant figh&ories in 2 dimensions is, then,
heavily constrained by the symmetry.

In order to be more specific, assume that we are given a coaflyrmvariant quantum field
theory inD = 2. Those operator field®(z z) that transform under conformal transformations
like
of\"(af\" _
o9~ (%) (5] oo i@, ©)
with positive reah andh, are called primary fields of conformal weigftt f). Conformal sym-
metry imposes that the two-point correlation function obfpvimary fieldS®1(z;, z1)P2(2, 22))

must be
1

225
if (hy,hy) = (ho,hy) and zero otherwise, whem, = z; — 2, 71, = 71 — 2. Note that the
decay of the correlation function in EQIB.7 is algebraic,sathe typical situation of critical
condensed-matter systems. This is not strange, since miinglguantum many-body systems
can be understood at criticality as the regularization aaitice of some given conformal field
theory, as is the case, for example, of the critical Isingngua spin chain [21, 22]. Indeed,
conformal symmetry imposes similar decaying laws for the-pwint correlators in any number
of dimensions.

An important quantity which is to play a role is tis&ress-energy tensor,J(x), which can

be always defined for any field theory. For instance, for a-fregonic quantum field theory
defined in terms of a Lagrangiaf), the stress-energy tensor reads

(Q1(z1, 21)D2(22, 2)) = (B.7)

oL
Tyv(x) = Wavd’ - Lg/tv > (B8)

whereg stands for the quantum field of the free boson. It can be seg¢inttwo dimensions, the
stress-energy tensor of a conformally-invariant quanteid theory has only two non-vanishing
components, which are call&dz) andT(2). An important property of a primary field#(w, w)
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is that its operator product expansion with the stressggntemsor reads

T(2)D(w, w)

QW) + G D) + -

(z- )

Z—wp

T(@0(w, W) ————D(W, W) + ——g@(W, W) + - -, (B.9)

h 1
(z- w2 )
which can be understood as an alternative definition of agmnfield of conformal weight
(h, h).

The stress-energy tensor is an example of a quantum fieldsthat primary. Computing
its operator product expansion with itself, one gets

3 c/2 2 1
T@TWwW) = Z- WP + - W)ZT(W) + ﬁawT(W)
_ g

which clearly diters from EQ.BB. The above equations define the so-calleahtwbphic and
antiholomorphic central chargesandc, which depend on the particular theory under consider-
ation, much in the same way as the conformal weigdtk)(do. For example, for a free bosonic
quantum field theorg = ¢ = 1, whereas for a free fermionic quantum field theory ¢ = 1/2.

Yet, another property of the stress-energy tensor for cardtly-invariant quantum field theo-
ries in 2 dimensions is that it is possible to expand it in ®ohmodes as follows:

T@ = Zz‘”‘an

nez

>z, (B.11)

nezZ

7@

where the operatoiis, andL, satisfy the commutation relations

C
[Ln, Lm] = (N=mM)Lpim + 1_2(n3 — N)dn+mo

_ _ ¢
[Ln, Lrn] = (n - m)Ln+m + 1_2(n3 - n)6n+mo

[Ln, L] = 0. (B.12)

The above equations define two copies of an algebra whichiégldhe Virasoro algebra. Every
conformally-invariant quantum field theory determines presentation of this algebra, with
somec andc.

The construction of the Hilbert space for a conformal fieledty in 2 dimensions is very
much related to the above operator algebra. Given a va¢Qynvhich is assumed to exist by
hypothesis, the state B

lh, hy = ®(0, 0)|Q2) (B.13)
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created by a primary field(z z) of conformal weight, ﬁ) satisfies

Lolh,hy = hihh)
Lolh,hy = hih,h)
Lahh) = Lmhh)y=0 ¥Yn,m>0. (B.14)

Any state satisfying the above relations is called a highesght state. States of the form
LonyLon, -+ Loy Loy Loy -+ Lo b, ) (B.15)

are called descendant states, and are also eigenstatgsantl Lo with eigenvaluesh + n; +

Nz +---+njandh+m + my + --- + my respectively. The full tower of eigenstateslgf and

Lo constructed in this way is known as the Verma module. Thesefine Hilbert space of a
conformally-invariant quantum field theory in 2 dimensiatecomposes as the direct sum of
Verma modules, the number of which depends only on the nuofliqgaimary fields appearing
in the theory.



Appendix C

Some notions about classical
complexity theory

In this Appendix our aim is to give some very basic notions aad-technical background on
classical complexity theory. Excellent textbooks on thigi¢ are those of Garey and Johnson
[193] and Papadimitriou [194]. A review on complexity thgowith extensions to quantum
complexity theory, is given by Aharonov and Naveh in [151].

Let us begin with the following definition:

Definition C.1: An alphabet is a set of symbols.

We did not define the concept sfymbolsince we believe its meaning to be clear from the
context. Examples of alphabets &e= {a,b,..., 7}, Xy = {a,8,...,w}, andZ3 = {0,1}. The
alphabet3, with only two symbols, is usually referred to as thieary alphabet

Definition C.2: A language L over an alphabgtis a set of strings of symbols from

For instancel; = {jack, samdanielteald is a language over the alphat®t, andL, =
{010 0001Q 1001 is a language over the binary alphabet

Definition C.3: A decision problem is a problem for which the answer beloogs thinary
alphabet.

This is the kind of “yes” or “no” problems. That is, questianfsthe type “will the universe
expand forever?”, or “do | prefer chocolate or lemon iceaone?”, but also questions like “is the
number 1761935875391 the product of two or more primes?”indportant part of the theory
of computational complexity is built in terms of decisioroplems. More concretely, one has to
decide whether a given string of symbols from an alphab#edestance belongs to a certain
language or not. From now on we shall always restrict oueselo the binary alphabet, whose
symbols are callebits.

Languages are classified in termscoimplexity classesccording to dterent criteria. We
now define a complexity class that plays a major role in corityl¢heory:

129



130 Appendix C. Some notions about classical complexity toey

Definition C.4: Pis the class of languages L for which a deterministic Turirachine can
decide in a time @oly(|x)) if an instance x belongs to L or ngk| being the number of bits of
X.

In the above definition, we understand thateterministic Turing machinis our classical
model of computation. Usually, it is said that languagies P can bedecidedin polynomial
time by a deterministic Turing machine. Intuitively, we @nstand that a languagebelongs to
the complexity class P if there is &ficient classical algorithm that allows to deterministically
decide whether a given instangeelongs toL or not, where by the term ficient” we mean
“polynomial in the size of the instance”. Let us now definethroimportant complexity class:

Definition C.5: NP is the class of languages L for which there exists a detegtiini
polynomial-time verifier V such that

e ¥xe L, thereis ay such thay = poly(x) and (x,y) = 1, and
e ¥Yx ¢ L andVy such thaty| = poly(x)), V(X y) = 0.

Usuallyy is referred to as theitnessor certificate Both the witnesy and the verifiel help
in deciding whether the instancebelongs toL or not. Let us clarify Definition C.5 by means
of an example: let. = COMPOSITE be the language of humbers that can be decompssed a
a product of two or more primes. Lat= 161 be an instance of the decision problem “does
x belong to COMPOSITE?”". A possible witnegsan be given by the two prime numbers 7
and 23, and the verifie¥ can be a classical deterministic algorithm that perforredotiowing
check: 7x 23 = 161. Notice then that if the instance 161 belongs to COMP@&SkEre is
a witness 7, 23 such that the verifier can check that the iosthrlongs to the language. On
the contrary, if we are given an instance that does not belor@OMPOSITE (for instance,
x = 17), then there is no witnegssuch that our verifier can check that 17 is a product of
two or more primes. In a way, the witness has to be thought tie@sproposal of solution”,
and the verifier has to be considered as a classical algotihmallows to deterministically
and dficiently check whether the proposed solution to the speciBtaince is correct or not.
This example shows that COMPOSIEENP, which in less mathematical words is commonly
referred to as “the problem of deciding whether a given nunigbthe product of two or more
primes is NP”.

Given the Definition C.5 of the NP complexity class, we can mfine the following:

Definition C.6: NP-hardis the class of languages L such that the problem of deciding
whether an instance’sbelongs or not to a language’ le NP can be ficiently reduced to the
problem of deciding whether an instance x belongs or not té&x_and L’ € NP.

In plain words, a problem is said to be NP-hardlif the instances acdll the NP problems
can be éiciently mapped to specific instances of the NP-hard problémarefore, if a language
L € NP-hard can be decided by some deterministic classicatitiigg the same procedure can
essentially be applied to decide all the languages in theptadity class NP, and “solve all the
NP problems”.
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Let us now define the important concept of NP-complete:
Definition C.7: NP-completas the class of languages L such that INP-hardand L € NP.

According to Definition C.7, NP-complete languages aredHaaguages in NP such that
being able to decide about one of them implies being ablecmdabouthe wholecomplexity
class NP. An important example of an NP-complete langua@S4T. A possible instance
of the 3-SAT decision problem is a boolean formula in conjiwecnormal form ovem bits
d(X1, X2,..., %) = CL ACy A --- ACyp, Wherex, i = 1,2,...,n, denotes the value of the
bits, andCj, j = 1,2,...,m, are the so-calledlauses Each clauseC; is built in the way
Cj=(X1V X2V X3), wherexX, is aliteral for bit « of clausej, which can be any of the bit
variables or its negation. The decision problem is propéeiined by the following question:
“given an instance is there a string ofi bits (y1, Yo, . . ., ¥n) such thatp(y1, yo, ..., y¥n) = 1?7, or
equivalently, “is there a string afbits (y1, Vo, . .., ¥n) such that all then clauses are satisfied?".

The proof of the NP-completeness of 3-SAT is one of the mdevaat results in the field
of complexity theory, and is due to the original work of CoGR]. That proof opened the door
to the discovery of many other NP-complete languages addyfdNP-complete languages (or
problems) appear in manyftérent fields of mathematics, physics, and science in geriEnalr
relevance comes in part from the fact that they are at the beane of the most celebrated open
guestions in mathematics, which reads as follows:

Problem C.1: IsP# NP ?

To determine the answer to the above question, it would fiéckunt to prove that it is
possible to deterministically decide some NP-completguage éiciently, and then = NP,
or on the contrary to prove that it is impossible thaently and deterministically decide an
NP-complete language, and therefore RIP. While the most accepted opinion is that P,
it has been so far impossible to produce a precise and maticah@oof of this, neither of the
opposite statementPNP. Indeed, Problem C.1 remains today as probably the malénging
open problem in computer science [194].

Let us mention as well that the deterministic complexityssts P, NP, NP-hard and NP-
complete can be further generalized if we consider claspicbabilistic models of compu-
tation, the equivalenprobabilistic complexity classes being called BPP, MA, MA-hard and
MA-complete. Furthermore, if the underlying computatiomadel is a quantum computer, the
corresponding generalizeflantumcomplexity classes are called BQP, QMA, QMA-hard and
QMA-complete. The study of these classes is beyond the safaés Appendix, and we refer
the reader to [151] and references therein for further ldet&i quantum complexity theory and
its consequences for quantum computation.






Apéendice D

Resumen en esp@ol

D.1 Introduccion

Desde las pioneras ideas de Feynman [1] hasta el dia deshimfpimacion y computacion
cuanticas han evolucionado de forma veloz. Siendo la meg&uantica en sus origenes con-
siderada esencialmente como un marco tedrico en el que prgicar ciertos procesos fun-
damentales que acontecian en la Naturaleza, fue duranéfiés 80 y 90 cuando se empezb a
pensar sobre el comportamiento intrinsecamente coaédécmundo en el que vivimos como
una herramienta con la que poder desarrollar tecnologi#es idformacion mas potentes, basa-
das en los mismos principios de la fisica cuantica. Talmehandauer dijola informacion es
fisica[3], por lo que no debe en absoluto extrafarnos el que setameecomulgar la mecéanica
cuantica con la teoria de la informacion. Y nada massigje la realidad, pues pronto se vio
que era posible utilizar las leyes de la fisica cuantiaa paalizar tareas inconcebibles desde
un punto de vista clasico. Por ejemplo, el descubrimietdadteleportacion [4], la codifica-
cion superdensa [5], la criptografia cuantica [6, 7]algoritmo de factorizacion de Shor [8] o
el algoritmo de blsqueda de Grover [9], constituyen algud®los logros remarcables que han
atraido la atencibn de mucha gente, dentro y fuera de teieieQueda la informacion cuanti-
ca, pues, constituida como un campo genuinamente pluptlier, en el que se concentran
investigadores provenientes de diferentes ramas deda,flas matematicas y la ingenieria.

Mientras en sus origenes era la informacion cuanticargse beneficiaba del conocimiento
de otros campos, a dia de hoy las herramientas desarskedel marco de la teoria cuantica
de la informacion pueden ser asimismo usadas en el estadicotlemas de diferentes areas,
como la fisica de muchos cuerpos o la teoria cuantica mgas. Ello es debido al estudio de-
tallado que la informacion cuantica desarrolla de lasataciones cuanticas,antrelazamiento
cuantico. Cualquier sistema fisico descrito por lassadela mecanica cuantica se puede por lo
tanto considerar bajo la perspectiva de la teoria cusulcla informacion a través de la teoria
del entrelazamiento.

Para ser mas concretos, concentrémonos aqui en los satapa informacion cuantica, la
fisica de la materia condensada, y la teoria cuanticaadgaos. Pese a que estas tres ramas de
la fisica se pueden considerar en si mismas como indeggndj hay claro solapamiento entre
ellas, de forma que el conocimiento en una beneficia al rBstoejemplo, la teoria de campos
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conforme [21] ha ayudado a entender las diferentes clasaesigkersalidad que aparecen en los
sistemas de muchos cuerpos en () dimensiones. El estudio del entrelazamiento que aparece
en el estado fundamental de algunos Hamiltonianos cu@ngic una transicion de fase cuantica
muestra analogias directas con el estudio de entropissoda cuantica de campos [31-44].
Tales resultados conectan también con el funcionamientéahicas numéricas, como el grupo
de renormalizacion de la matriz densidad [20], el cual jtermalcular propiedades basicas
de algunos sistemas cuanticos de muchos cuerpos [45-@O0dtria parte, existe una relacion
intrinseca entre las transiciones de fase cuanticas p@élo universal de computacion cuantica
adiabatica [16,61—71], el cual plantea hoy retos dentroatepo de la teoria de la complejidad
[72].

El trabajo que presentamos en esta tesis, y del que trateendastilar algunos de los as-
pectos mas importantes en este resumen, se encuentrargarfase entre la informacion y
computaciébn cuanticas, la teoria cuantica de muchegos, y la teoria cuantica de campos.
Usamos herramientas de estas tres disciplinas para arnalitdemas que aparecen en su in-
terseccion. Concretamente, en la seccion 2 de este rascomsideramos la irreversibilidad
del grupo de renormalizacion desde el punto de vista deoldateuantica de la informacion
mediante el uso de la teoria de mayorizacién y la teoriaatepos conforme. En la secciébn
3 calculamos el entrelazamiento de una copia de un sistgmagtitt para una gran variedad
de modelos con la ayuda de técnicas de teoria de campasweny matrices de Toeplitz. La
entropia de entrelazamiento del modelo de Lipkin, Meshk®lick se considera en la seccion
4, mostrando muchas analogias con la que aparece en sigtaaricos en (+ 1) dimensio-
nes. En la seccion 5 aplicamos las ideas de las leyes da esckls correlaciones cuanticas en
las transiciones de fase cuanticas al estudio de los fgamicuanticos, en especial el algorit-
mo de factorizacién de Shor y los algoritmos cuanticosvidueion adiabética que solucionan
un problema NP-completo y el problema de bUsqueda en umadeadatos desordenada, res-
pectivamente. De igual manera, utilizamos técnicas iadps originariamente en la fisica de
la materia condensada para realizar simulaciones ctagicet medio de estados producto de
matriz, de un algoritmo cuantico adiabatico en la setéibFinalmente, la seccion 7 conside-
ra el comportamiento de algunas familias de algoritmositieids bajo el punto de vista de la
teoria de mayorizacion, y la seccion 8 recoge algunaiblessdirecciones futuras a partir de
este trabajo.

D.2 Mayorizacion a lo largo de flujos paranétricos y de renorma-
lizacion

Desde la introduccion del grupo de renormalizacion pdsbvi[18,19, 73], y dado que el pro-
ceso de integracion de modos parece ser una operacidarsiale en si misma, es natural el
hecho de preguntarse si los flujos del grupo de renormadizaain irreversibles. Tal pregunta es
en cierta medida equivalente a preguntarse si existe utraioti®n fundamental para recuperar
la fisica microscopica a partir de la macroscopica, @ gegnéricamente, si existe una pérdida
neta de informacion a lo largo de las trayectorias del gagoenormalizacion. Esfuerzos en
esta direccion fueron originariamente debidos a WallaZéy[74], pero el teorema clave fue
posteriormente demostrado por Zamolodchikov [75], desaccontexto de las teorias de cam-
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pos en (1+ 1) dimensiones: para cada teoria de campos unitaria, mafieable, e invariante
Poincaré, existe una funci@universal que decrece a lo largo de los flujos de renormadizac
siendo Unicamente estacionaria en los puntos fijos coefmrdonde se reduce a la carga central
cde lateoria. Tal resultado establece una flecha en los flejagupo de renormalizacion, dado
que implica que una teoria puede ser la realizacion imfa(IR) de otra ultravioleta (UV) s6lo

si sus respectivas cargas centrales satisfacen la dekigaat < cyy.

Se da entonces la siguiente pregunta: ¢bajo qué condicsneerifica la irreversibilidad
del grupo de renormalizacion en dimensiones mayores?uEation ha sido analizada desde
diferentes puntos de vista [76—94]. Nuestro propositd agmmas humilde: tratamos de entender
la irreversibilidad del grupo de renormalizacion en+(1) dimensiones desde la perspectiva de
la informacion cuantica, por medio de la teoria de mazmibn.

En particular, demostramos el siguiente teofema

Teorema 1.1:Dada una teoria fisica eflL + 1) dimensiones que depende de un conjunto de
parametros reale§ = (g1, 0o, . . .), tal que

¢ hay un punto conforme no trivig@*, para el que el modelo es invariante conforme y sin
fronteras,

¢ las deformaciones desg@g en el espacio de parametros en la direccion positiva deaie
vector unitarioé preservan parte de la estructura conforme del modelo, Idetima que
los autovalores de la matriz densidad del vag{@) son de la forma

1

A =

1 (1+ N1ge + Nqe2 + - - )
q

/12:(1 Nget + NpQe2 )

+ N gt + Mgtz 4 - (D.1)

@(-1)

A g

>

- A+mg@+mge2+---)
con degeneraciones,rexponenteg; > 0Vi, y factores ¢g) dependientes de los parame-
tros, para valoregy = §* + aé, a> 0, y

e los factores (g) son funciones monoétonas decrecientes en la direcci@ de decir,
A (S dag(g)
& (Vga(@) = —~ < (D-2)

a lo largo del flujo.

Entonces, fuera del punto conforme hay mayorizacion poatide los autovalores de la
matriz densidad reducida del estado fundamental a lo largjdldjo en los parametrog en la
direccibn positiva d&, es decir,

p(1) < p(32) .

D.3
=g +a& g.=g +aé a >a. (D-3)

aytilizamos aqui la misma numeracion para los teoremas n$eque se ha usado alo largo de la tesis
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Ejemplos analiticos de situaciones similares a la despor el anterior teorema pueden
ser obtenidos para las cadenas cuanticas de espin denbtige/ XY, para las que algunos
flujos paramétricos coinciden con flujos del grupo de remadimacion. Un estudio parecido se
puede también realizar exclusivamente en el punto corfgama flujos en el tamafio del bloque
en consideracion. En particular, derivamos relacionanalgorizacion analiticas para cualquier
teoria conforme en 1) dimensiones y sin fronteras en el escenario bipartitadwal tamafio
del subsistema considerado cambia, es decir, bajo defmmescdel tamafid de la region
accesible a una de las partes. Nuestro resultado prindijjpilse puede expresar mediante el
siguiente teorema:

Teorema 1.2:p, < prr Si L > L’ para todas las posibles teorias conformes(&n 1)
dimensiones sin fronteras.

Un ejemplo de situacion similar a la descrita por este teargiene dada por el modelo
cuantico de cadena de espiX. Todos estos resultados proporcionan fundamentos matesna
solidos para la existencia de relaciones de mayorizaxioriargo de flujos de renormalizacion
para el estado fundamental de teorias definidas enl(ldimensiones, en particular muchas
cadenas cuanticas de espin.

D.3 Entrelazamiento de una copia en sistemas éuticos en(1 + 1)
dimensiones

El objetivo de los resultados resumidos en esta seccioh estueliar una medida de entrela-
zamiento que, como la entropia de entrelazamiento, seepdm@ostrar que presenta leyes de
escala para sistemas cuanticos criticos enl(fldimensiones. Llamamos a esta medidaela-
zamiento de una copfd 13,120], y su definicibn operacional viene esencial@embtivada por
razones practicas: mientras que la entropia mide ladzhfpromedio de entrelazamiento que
es posible destilar de un sistema bipartito en el limiteedert un nUmero infinito de copias del
sistema [121], el entrelazamiento de una copia mide ladzatile entrelazamiento que existe
en el caso mas realista de disponer Unicamentedénica copia del sistema. Dado un sistema
bipartito de parteé\y B, esta medida viene dada por la expresion

Ei(oa) = —log, A1 = Ea(ps) , (D.4)

dondepa y pg son las matrices densidad reducidas payaB, y 11 es el maximo autovalor de
éstas.

El resultado que demostramos es que, para cualquier timdampos conforme en {11)
dimensiones, el entrelazamiento de una copia del estadiarfuental para un subsistema de
longitud L esta relacionado con la entropia de entrelazamientoamigdia expresion

1 c (rlog, €)? log, L
Ealor) = 35000 - 5 log,L o)

(D.5)
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dondeS(p.) es la correspondiente entropia de entrelazamiento.réstdtado se ve reforzado
por calculos analiticos para sistemas fermidnicosidimes, donde demostramos que siempre
que la entropia de entrelazamiento del estado fundam@atah subsistema de longitlides-
cala logaritmicamente pata> 1, asi lo hace también el entrelazamiento de una copiajmcon
prefactor que es exactameidemitad del prefactor de la entropia. Ello involucra que la mitad
del entrelazamiento cuantico disponible en un numeroifofide copias de un sistema bipartito
esta ya disponible en el caso de una copia, en el limite 1. Tal relacion parece estar intima-
mente relacionada con los sistemas criticos erijtimensiones, pues fuera de la region critica
tal afirmacion deja de ser cierta, y el entrelazamiento @decopia deja de ser, asintbticamente,
la mitad de la entropia de entrelazamiento, como se puadesdear para el modelo de cadena
cuantica de espiKY.

D.4 Entropia de entrelazamiento en el modelo de Lipkin, Meshkov
y Glick

Elmodelo de Lipkin, Meshkov y Glick [132—-134] ha atraid@tancion en mayor o menor grado
dado que se trata de un modelo que permite un tratamientenmamuy eficiente, asi como
calculos analiticos. Ademas, proporciona un ejemptordmitivo de la relacion existente entre
el entrelazamiento y la conectividad de un sistema definidona red: en un modelo definido
en un grafo completamente conectado, el entrelazamiehés@delo fundamental del sistema se
comportacomo sieste estuviera definido en{11) dimensiones. Ello es consecuencia del papel
jugado por las simetrias en la descripcion del modelo. $a tesis, analizamos la entropia de
von Neumann calculada para el estado fundamental del mdddlgkin, Meshkov y Glick, y
mostramos que en las diferentes regiones criticas dehsiststa escala logaritmicamente con el
tamafo del bloque en consideracion, con un prefactor gperdle del parametro de anisotropia
del modelo.

Mas especificamente, el modelo de Lipkin, Meshkov y Glighg descrito por el Hamilto-
niano

A

N«

i<j

N
H= (O'f(O'}( + y(riyO')j/) -h Z ol, (D.6)
i=1
dondecy es la matriz de Pauli correspondiente a la posi&igren la direcciony, N al nimero
total de espines, ¥, y y h son ciertos parametros. Para 1 el anterior Hamiltoniano se puede
escribir también en términos del espin total como

A
H = —<(1+7)(J°- 3 -N/2) - 2hF
N
A
——A-y)(J" I +I T D.7

(LN I (D.7)
dondeJ? es la representacion de espNii2 del operador de Casimir, ¥ = J* +iJY. Este
modelo presenta diferentes clases de universalidad, cenmusstra en la FIg.0.1 mediante el

calculo numérico de la entropia de entrelazamiento parbhlogue dd. = 125 espines en un
sistema coN = 500. El estudio de las leyes de escala de la entropia enftasrties regiones
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Figura D.1: Entropia de entrelazamiento pra 500 yL = 125 como funcion déy vy.

del anterior diagrama de fases muestra grandes similitcolesl que aparece en el modelo
de cadena cuantica de espiiy, con proliferacion de leyes logaritmicas. Una compéracie
las leyes obtenidas en los dos modelos se presenta en lalddblaa similitud observada
en el comportamiento del entrelazamiento de este models snfmlelos cuanticos en ¢11)
dimensiones es notoria.

D.5 Entropia de entrelazamiento en algoritmos canticos

Los resultados mencionados en las secciones anteriorensalmn en las propiedades de en-
trelazamiento de sistemas cuanticos de muchos cuerpsiabiente desde la perspectiva de
la materia condensada y de la teoria de campos. Tambiéashesto que es posible aplicar
algunas de las herramientas de la teoria cuantica dedariation, como la mayorizacion, de
cara a una mejor comprension de estos sistemas. No es daagxtpues, que se puedan usar
técnicas de materia condensada y teoria de campos paralenmejor problemas dentro de la
informacion y computacion cuanticas.

Nos centramos ahora en el analisis de escala del entre&a#ampresente en los algoritmos
cuanticos. La figura de mérijppropuesta en [49] es el nUmero de Schmidt maximo sobre to-
das las posibles biparticiones de un sistema dabits o, en otras palabras, el maximo de los
rangos de las matrices densidad reducidas de cualquietitiipa posible. Se puede demostrar
quey > 250) donde la entropia de von NeumaB(p) se refiere a la matriz densidad reducida
de cualquiera de los dos subsistemas de la particion. delalostrd que, dada una computa-
cion cuantica, si = O(poly(n)) en cada paso del algoritmo cuantico, entonces éstaepaeard
simulada por medio de métodos clasicos de manera eficentatras palabras, una aceleracion
exponencial en un algoritmo cuantico es s6lo posibje siexp(?), 0 S(p) ~ n°, siendoay b
constantes positivas.
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Cadena de espin cuantisa’ Modelo de Lipkin, Meshkov y Glick
H=-3Y (@Uixo'ixﬂ + @O—iyo—iyﬂ + /lo'iz) H=-g Zij (O'ixo'}( + Vo'iyo')j/) -hyl, of
St(4,y = 0) ~ 3 logy(L) Si(h,y = 1) ~ 3 logy(L)

Sty =0)=Si(1=0.y =0) ~ §log, (1~ 2%) || Si(h.y=1)-Si(h=0.y = 1)~ }log, (1~ 1?)

SL(1=1y=1)~ Llog,(L) Suh= 1,5 = 0)~ Llogy(L)
SL(Ly = 1) ~ —¢ log,(m) Si(h.y =0)~ —log,[1-hl
SL(1=19)-SL(A=1y=1)~ §logy(y) St(h=19)-Si(h=1y=0)~ glog,(1-7)

Cuadro D.1: Comparacion de resultados entre la cadenapile @santicaXY y el modelo de
Lipkin, Meshkov y Glick, cuanddN > L > 1.

En esta tesis analizamos las leyes de escala de la entopidardlazamiento en diversos al-
goritmos cuanticos. En primer lugar, un estudio analidiel algoritmo cuantico de factorizacion
de Shor [8] muestra que las correlaciones escalan de la enaré&s fuerte posible. Concreta-
mente, demostramos que hay un paso en el algoritmo en el que

rangop) ~ r, (D.8)

dondep es cierta matriz densidad reducida del sistenmaz YO(N), siendoN = O(2") el nmero
a factorizar, com el nimero total de qubits usados en el algoritmo.

Posteriormente, realizamos un analisis numérico degoriaho cuantico adiabatico solu-
cionando el problema NP-completo conocido como Cobertysata [16,61—-68]. Mediante una
generacion de instancias duras de solucion Unica, leahas las leyes de escala con el tamafio
del sistema para la diferencia energética entre el estattamental del sistema y el primer
estado excitado, y también para la entropia de entrelammnde una biparticion exacta, cerca
del punto critico y hasta 20 qubits. Los resultados, mdesan la FigLDI2 y en la FIg.13.3 son
compatibles con una ley de escala inversa con el tamafdstirha para la diferencia energéti-
ca, Y con una ley de escala proporcional al tamafo del sisfgara la entropia, similar a la
observada previamente en el algoritmo de Shor.

Finalmente, realizamos un analisis de la entropia delaaamiento presente en la imple-
mentacion adiabatica del algoritmo de blsqueda de GfBy89, 70]. Un estudio analitico nos
permite demostrar que lejos del punto de minima diferegmcégética la entropia de cualquier
biparticion tiende a cero a medida que se incrementa elftaiNa= 2" de la base de datos,
mientras que en el punto de minima diferencia energéstatiende a saturarse en 1 mediante
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Figura D.2: Minima diferencia energética (en unidademadsionales) en funcion del tamafio
inverso del sistema, en promedio y para el peor caso sobas tas instancias generadas alea-
toriamente. Las barras de error dan un 95 por ciento de névebdfianza para la media. El
comportamiento es aparentemente lineal para el promedio.
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Figura D.3: Ley de escala de la entropia de entrelazampar@una biparticion del sistema de
igual tamafio de las partes, en promedio y para el peor case tmlas las instancias generadas
aleatoriamente. Las barras de error dan un 95 por cientoveede confianza para la media.
Los datos son consistentes con una ley de escala lineal.



D.6. Simulacbn clasica de algoritmos canticos usando estados producto de matriz 141

la ley

4
S(n>1)~1- E2—”/2 . (D.9)

Las anteriores consideraciones involucran que el engeleEnto en este algoritmo permanece
siempreacotadoentre las distintas llamadas al oraculo cuantico. Tatkmibn también es
valida para la implementacion del algoritmo de Grover&minos de un circuito cuantico, y
recuerdan a la saturacion del entrelazamiento en cadeaatiaas de espin no criticas [22, 37,
38].

En la Tabl{DR mostramos una recopilacion de las difesdeiges de escala para el entre-
lazamiento observadas en diferentes situaciones. Laaluieza ley de escala depende de la
dureza del problema a tratar.

Problema Entropia de entrelazamiento
8
Q.
o
% Algoritmo para Cobertura Exacta S =0(n
[%2]
% Algoritmo de Shor S = 0O(log, r) ~ O(n)
S
l Fermiones criticos eml(+ 1) dimensioneg S= O(nd%-l log, n)
Bosones criticos emnl(+ 1) dimensiones S= O(n%)
Cadenas de espin criticas S = O(log, n)
Cadenas de espin no criticas S=001)
Algoritmo de Grover S=0()

Cuadro D.2: Leyes de escala del entrelazamiento para wiifsreroblemas, en orden decrecien-
te en complejidad.

D.6 Simulacibn clasica de algoritmos canticos usando estados pro-
ducto de matriz

Pese a que es posible estudiar numéricamente las propgedadaja energia de cualquier mo-
delo mediante una diagonalizacion exacta de su Hamiltloniatécnicas similares, tal posibi-

lidad se limita siempre a un nimero de particulas relatam@te pequefno debido al crecimiento
exponencial del tamafo del espacio de Hilbert. Ciertaejezdta es una de las motivaciones
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béasicas para construir un ordenador cuantico [1]. Us#mtkrnologia actual convencional, un
estudio numeérico fiable de las propiedades del estado fivewtal de un Hamiltoniano cuanti-
€0 genérico sblo se puede realizar para sistemas del ol@l@® espines. Afortunadamente,
tenemos a nuestra disposicién otras técnicas numéticasjemplo de ellas es el grupo de re-
normalizacion de la matriz densidad (GRMD), introducidw Jhite en [20]. A pesar de que
pronto se vio que el GRMD proporcionaba resultados pregiaos la energia del estado fun-
damental de sistemas cuanticos en una dimension espacmlien se observd que el método
no funcionaba tan bien al ser aplicado a sistemas de mayendionalidad [171,172]. Incluso
en el caso de (% 1) dimensiones habia una diferencia en los resultadosidbtea partir del
método para sistemas con condiciones de contorno abiegasodicas, siendo la primera la
mas precisa. No obstante, el GRMD ha sido el algoritmo dereatia a lo largo de la Gltima
década para calcular las propiedades de baja energia dleloa@uanticos en una dimension
espacial.

Tras la aparicion del GRMD, Ostlund y Rommer obtuvieron esuitado notable [47], al
mostrar que el algoritmo original del GRMD se podia entemdenpletamente en términos de
los llamados estados producto de matriz. Originariameniteducidos en el modelo de ligadu-
ras de valencia deffleck, Kennedy, Lieb y Tasaki [45, 46], generalizados por EanNachter-
gaele y Werner [48], y redescubiertos en el ambito de lanmézion cuantica por Vidal [49],
los estados producto de matriz han demostrado ser espenialratiles de cara a desarrollar
técnicas numeéricas para el calculo de las propiedadbsajdesnergia junto con la dinamica de
Hamiltonianos suficientemente locales en una dimensipacé [50-57], y han servido tam-
bién de inspiracion para diversas técnicas numérieasada al estudio de sistemas con mayor
dimensionalidad [58-60].

La pregunta natural es, pues, si los estados producto dézrpagden ser empleados de
cara a simular la dinamica de un ordenador cuantico. Entesis hemos mostrado que ello es
ciertamente posible, y que se pueden realizar simulacisa@stamanos relativamente grandes
del sistema con una precision controlada. El parameteoagutrola la precision de nuestras
simulaciones es el tamafiode las matrices que parametrizan el estado, y del que ya-habla
mos en la seccion anterior. Esperamos por lo tanto querasegiroximaciones clasicas fallen
para aguellos sistemas en los qug @lecesario sea inherentemente exponencial en el tamafo
del sistema. No obstante, en ciertos casos es posible tejrasha buena simulacion clasica
manteniendg = O(poly(n)) a lo largo del proceso, siendes el nUmero de qubits.

Concretamente, hemos realizado un analisis de diversaagiiones clasicas del algoritmo
adiabatico descrito en la seccion anterior solucionalgwoblema NP-completo de Cobertura
Exacta. El hecho de que la entropia de entrelazamientoeabacen ese algoritmo la ley de
escalaS ~ 0,1n nos induce a pensar que tal vez sea posible reproducir cdiddidey de
manera aproximada algunas de las propiedades esencibigali#mo cuantico mediante una
simulaciébn clasica con estados producto de matriz, dageetiprefactor de la ley de escala es
relativamente pequefio.

Nuestros datos numéricos para la evolucion del valorradpede la energia de sistema se
muestran en la Fig.D.4. El sistema prevalece notoriamesreaael estado fundamental ins-
tantaneo a lo largo de la evolucion aproximada y, como padever, el error absoluto maximo
respecto a nuestra mejor simulacién clasjea=(40) aparece cuando la evolucion se acerca a
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Figura D.4: Calculo del error absoluto, comparado con sbga= 40, del valor esperado de
la energia (en unidades adimensionales) en funcion daimgdro de interpolaciés para una
instancia tipica de 30 bits y 24 clausulas, para 100, y y creciente. En pequefio, mostra-
mos el valor esperado instantaneo de la energia (en widatimensionales). Otras instancias
muestran un comportamiento similar.

un punto critico. Cerca de este punto de transicion de &seror absoluto en la energia es del
orden de 107 — 10-3, menor que la tipica diferencia energética entre el ediatlamental y el
primer estado excitado para este tipo de sistemas.

Como ejemplo simbolico, nuestro programa ha solucionadoinstancia con = 100 bits,
es decir, el algoritmo adiabatico aproximado ha enconteddestado producto correcto entre
2100 . 10%° posibilidades para una instancia dura eon= 84 clausulas yT = 2000. La
simulacion se realizd con un especialmente pequeidld < 2°0 = ynax Y SE presenta en la
Fig[D.3.

De cara a un analisis mas profundo de la simulacionadasiemos lanzado una blsqueda
del minimoTmin(n) que soluciona muestras de instancias duras bigs. Nuestros resultados
aparecen en la FIg..6. El promedio sobre instancias loies de T,in(n) parece crecer lenta-
mente com, a pesar de que los casos extremos necesitan mayores tibagiaa = 25. El
relajamiento del crecimiento canen los graficos es debido a la dificultad en la generacion de
instancias duras paregrande.

D.7 Flecha de mayorizaddn en el diséio de algoritmos clanticos

Algunos intentos de desenmascarar las propiedades $asdas algoritmos cuanticos ya han
sido explorado. Un rol esencial es indudablemente el qumjakentrelazamiento [49, 50, 155—
159]. De hecho, pese a que éste es un recurso natural a satiadrpen el disefio de algorit-
mos cuanticos, existen ejemplos conocidos de algoritrasadbs en oraculos, mas rapidos que
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Figura D.5: Entropia de entrelazamiento de una bipartigi probabilidad de la solucion como
funcibn del parametro de interpolaci@ para una simulacion cop = 14 de la evolucion
adiabatica solucionando una instancia dura ge€100 bits ym = 84 clausulas.
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Figura D.6: Casos promedio y peor de la estadistica acaailiastan = 60 paraTmin(n) (en
unidades adimensionales). Los promedios se realizan 80brimstancias para cadaexcepto
paran = 50,60, con 199117 instancias respectivamente. Las barras de error da® por9
ciento de nivel de confianza en la media.
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cualquier posible algoritmo clasico, y en los que el registiantico permanece siempre en un
estado producto entre las diversas llamadas al oracuse #€&do, la aceleracion respecto al
caso clasico es solo por un factor dos en estos ejemplds 18&, 182]. En esta tesis presen-
tamos una alternativa al estudio de los algoritmos cudsitica idea basica es que existe un
fuerte comportamiento subyacente respecto a mayorizagitalgunas familias de algoritmos
cuanticos que parece jugar también algin papel en semdiai Concretamente, estudiamos la
evolucion en el tiempo, respecto a mayorizacion, de laibigion de probabilidad de los po-
sibles resultados de nuestro aparato de medida, paraaivaligoritmos cuanticos, tal y como
fue introducido en [152].

En primer lugar, estudiamos la amplia familia de algoritrcoénticos de estimacion de
fase [2, 8,161, 181-183]. El elemento clave en estos atgosites el uso de la transformada de
Fourier cuantica sobre un estado previamente prepar@docomo se muestra en los circuitos
cuanticos representados en la[EiglD.7 y la[Fig.D.8.

10) + & 219271

0 —[0u]
0 —[0u]

10) + e 2ri62" 1)

QFT

|0) + e2192°|1)

0 —[0u]

|V> U20 o U2n72 Uznfl

B B

)

Figura D.7: Circuito cuantico para el algoritmo de estiibadle fase. El operadds y el vector
l¢) son tal qued|¢) = e 2"¢|¢), siendog < [0, 1) el parametro a estimar corbits de precision.

{0 {00

Up — Uy ——{Uun 4|

Uy Us

U]

Figura D.8: Descomposicion canonica del operador tcansdda de Fourier cuantica. Pdy
nos referimos a la puerta unitaf@(0] + €¥7/2'|1)(1|, controladaj — 1 qubits por debajo.
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Figura D.9: Blsqueda cuantica adiabatica para el caminoptimo conN = 32 elementos y
tiempoT = 160. No hay mayorizacibn paso a paso

Demostramos que el operador transformada de Fouriericaanyoriza paso a paso la
distribucion de probabilidad resultante de las medidda base computacional, en el algoritmo
cuantico de estimacion de fase. La distribucion de pribldad resultante sigue, por lo tanto, un
ciclo de mayorizacién a lo largo de la totalidad del algoadt

Posteriormente, consideramos el analisis respecto arinagidn de diferentes algoritmos
cuanticos adiabaticos solucionando el problema de Grdaky como se muestra en la F1g.D.9
y la Fig[DI0, dondé, (t) y P.(t) + P_(t) representan los dos primeros cumulantes de mayori-
zacion en el instante la flecha de mayorizacion aparece en la evolucion caoreipnte a un
parametro de interpolacién 6ptimo, dando aceleracifadratica respecto al caso clasico junto
con mayorizacion paso a paso a lo largo de toda la evolucién

Finalmente, estudiamos la aparicibn de mayorizacibnrealgoritmo de camino cuantico
solucionando un problema clasico definido en un grafo m@atrcon aceleracion exponencial
[179]. Para tal algoritmo, la evolucion de los cumulantesntayorizacion obedece un ciclo
tal y como se muestra en la Fig.Dl.11. Este comportamienteerda al ya observado en los
algoritmos cuanticos de estimacion de fase.

D.8 Direcciones futuras

Hay diversas direcciones futuras que pueden ser consateeaplartir del trabajo presentado en
esta tesis. En primer lugar, podria hacerse un estudittianaletallado de mayorizacion e irre-
versibilidad a lo largo de los flujos del grupo de renormaliiza para teorias en mas de+«1l)
dimensiones. El comportamiento del entrelazamiento deopia para tales teorias también es
otra posible extension. Desde el punto de vista de cordpléjcomputacional, es aln un reto
el saber si los algoritmos cuanticos adiabaticos ser@maapaces de solucionar los problemas
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Figura D.10: BlUsqueda cuantica adiabatica para el caimo conN = 32 elementos y
tiempoT = 44. Se verifica mayorizacion paso a paso.

cumulants

Figura D.11: Evolucion temporal de 22 cumulantes en elridlgo de camino cuantico, para
n = 10 qubits. El proceso obedece a un ciclo de mayorizacion.
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NP-completos de manera eficiente. Analisis numéricosstiss elgoritmos se podrian realizar
mediante extensiones de las técnicas basadas en losseptadocto de matriz que nosotros
hemos considerado. Asimismo, seria plausible realinanlsiciones clasicas mediante los mis-
mos métodos de otros algoritmos cuanticos, tales comigetitno de factorizacion de Shor.
No obstante, el gran problema en computacion cuanticiné@nsiendo el disefio de nuevos
algoritmos cuanticos Utiles y eficientes. Por otra paitsde la perspectiva de la teoria cuantica
de muchos cuerpos, el reto es el desarrollo de nuevas deagerumeéricas para el estudio de
sistemas cuanticos en{2l) dimensiones, y en especial para sistemas fermionieos,|ps que
se sabe que la ley de escala de area para la entropia dezamriento falla. Un mejor enten-
dimiento de estos sistemas, tanto desde un punto de wistadt€omo numérico, junto con un
ensayo de la funcidn de onda de su estado fundamental qpeastiao desde el punto de vista
computacional y que reproduzca fidedignamente sus praigsdie entrelazamiento, prevalece
a dia de hoy como un problema abierto.
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